Abstract

Collisions between ultrashort pulses with different wavelengths are studied numerically. The relative delay, wavelength difference, focusing geometry, and chirp are used to accurately control the distance at which pulses undergo conditional collapse and generate plasma and white light. A wide supercontinuum spectrum is achievable even with pulses that by themselves do not have sufficient power for filament formation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. Rairoux, H. Schillinger, S. Niedermeyer, M. Rodriguez, F. Ronneberger, R. Sauerbrey, and D. Weite, Appl. Phys. B 71, 573 (2000).
    [CrossRef]
  2. H. L. Xu, G. Mejean, W. Liu, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, Appl. Phys. B 87, 151 (2007).
    [CrossRef]
  3. H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, Eur. Phys. J.: Appl. Phys. 20, 183 (2002).
    [CrossRef]
  4. G. Mechain, C. D'Amico, Y. B. Andre, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, Opt. Commun. 247, 171 (2005).
    [CrossRef]
  5. F. Theberge, Q. Luo, W. Liu, S. A. Hosseini, M. Sharifi, and S. L. Chin, Appl. Phys. Lett. 87, 081108 (2005).
    [CrossRef]
  6. R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. Li, A. Lindinger, L. Woeste, P. Bejot, L. Bonacina, and J.-P. Wolf, Appl. Phys. Lett. 89, 171117 (2006).
    [CrossRef]
  7. W. Liu, F. Théberge, J.-F. Daigle, P. Simard, S. Sarifi, Y. Kamali, H. Xu, and S. Chin, Appl. Phys. B 85, 55 (2006).
    [CrossRef]
  8. G. Fibich, Y. Sivan, Y. Ehrlich, E. Louzon, M. Fraenkel, S. Eisenmann, Y. Katzir, and A. Zigler, Opt. Express 14, 4946 (2006).
    [CrossRef] [PubMed]
  9. Z. Jin, J. Zhang, M. H. Xu, X. Lu, Y. T. Li, Z. H. Wang, Z. Y. Wei, X. H. Yuan, and W. Yu, Opt. Express 13, 10424 (2005).
    [CrossRef] [PubMed]
  10. S. Tzortzakis, G. Mechain, G. Patalano, M. Franco, B. Prade, and A. Mysyrowicz, Appl. Phys. B 76, 609 (2003).
  11. A. Couairon, G. Mechain, S. Tzortzakis, M. Franco, B. Lamouroux, B. Prade, and A. Mysyrowicz, Opt. Commun. 225, 177 (2003).
    [CrossRef]
  12. L. Berge, Phys. Rev. E 69, 065601 (2004).
    [CrossRef]
  13. K. Wang, L. J. Qian, H. Luo, P. Yuan, and H. Y. Zhu, Opt. Express 14, 6366 (2006).
    [CrossRef] [PubMed]
  14. E. Raikkonen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, Opt. Express 14, 7914 (2006).
    [CrossRef] [PubMed]
  15. V. Tombelaine, P. Leproux, V. Couderc, and A. Barthelemy, IEEE Photon. Technol. Lett. 18, 2466 (2006).
    [CrossRef]
  16. D. Faccio, A. Averchi, A. Dubietis, P. Polesana, A. Piskarskas, P. D. Trapani, and A. Couairon, Opt. Lett. 32, 184 (2007).
    [CrossRef]
  17. F. Theberge, N. Akozbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
    [CrossRef] [PubMed]
  18. J. H. Marburger, Prog. Quantum Electron. 4, 35 (1977).
    [CrossRef]
  19. M. Kolesik, J. V. Moloney, and M. Mlejnek, Phys. Rev. Lett. 89, 283902 (2002).
    [CrossRef]
  20. M. Mlejnek, E. M. Wright, and J. V. Moloney, Opt. Lett. 23, 382 (1998).
    [CrossRef]

2007

H. L. Xu, G. Mejean, W. Liu, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, Appl. Phys. B 87, 151 (2007).
[CrossRef]

D. Faccio, A. Averchi, A. Dubietis, P. Polesana, A. Piskarskas, P. D. Trapani, and A. Couairon, Opt. Lett. 32, 184 (2007).
[CrossRef]

2006

R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. Li, A. Lindinger, L. Woeste, P. Bejot, L. Bonacina, and J.-P. Wolf, Appl. Phys. Lett. 89, 171117 (2006).
[CrossRef]

W. Liu, F. Théberge, J.-F. Daigle, P. Simard, S. Sarifi, Y. Kamali, H. Xu, and S. Chin, Appl. Phys. B 85, 55 (2006).
[CrossRef]

F. Theberge, N. Akozbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

V. Tombelaine, P. Leproux, V. Couderc, and A. Barthelemy, IEEE Photon. Technol. Lett. 18, 2466 (2006).
[CrossRef]

G. Fibich, Y. Sivan, Y. Ehrlich, E. Louzon, M. Fraenkel, S. Eisenmann, Y. Katzir, and A. Zigler, Opt. Express 14, 4946 (2006).
[CrossRef] [PubMed]

K. Wang, L. J. Qian, H. Luo, P. Yuan, and H. Y. Zhu, Opt. Express 14, 6366 (2006).
[CrossRef] [PubMed]

E. Raikkonen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, Opt. Express 14, 7914 (2006).
[CrossRef] [PubMed]

2005

Z. Jin, J. Zhang, M. H. Xu, X. Lu, Y. T. Li, Z. H. Wang, Z. Y. Wei, X. H. Yuan, and W. Yu, Opt. Express 13, 10424 (2005).
[CrossRef] [PubMed]

G. Mechain, C. D'Amico, Y. B. Andre, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, Opt. Commun. 247, 171 (2005).
[CrossRef]

F. Theberge, Q. Luo, W. Liu, S. A. Hosseini, M. Sharifi, and S. L. Chin, Appl. Phys. Lett. 87, 081108 (2005).
[CrossRef]

2004

L. Berge, Phys. Rev. E 69, 065601 (2004).
[CrossRef]

2003

S. Tzortzakis, G. Mechain, G. Patalano, M. Franco, B. Prade, and A. Mysyrowicz, Appl. Phys. B 76, 609 (2003).

A. Couairon, G. Mechain, S. Tzortzakis, M. Franco, B. Lamouroux, B. Prade, and A. Mysyrowicz, Opt. Commun. 225, 177 (2003).
[CrossRef]

2002

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, Eur. Phys. J.: Appl. Phys. 20, 183 (2002).
[CrossRef]

M. Kolesik, J. V. Moloney, and M. Mlejnek, Phys. Rev. Lett. 89, 283902 (2002).
[CrossRef]

2000

P. Rairoux, H. Schillinger, S. Niedermeyer, M. Rodriguez, F. Ronneberger, R. Sauerbrey, and D. Weite, Appl. Phys. B 71, 573 (2000).
[CrossRef]

1998

1977

J. H. Marburger, Prog. Quantum Electron. 4, 35 (1977).
[CrossRef]

Appl. Phys. B

P. Rairoux, H. Schillinger, S. Niedermeyer, M. Rodriguez, F. Ronneberger, R. Sauerbrey, and D. Weite, Appl. Phys. B 71, 573 (2000).
[CrossRef]

H. L. Xu, G. Mejean, W. Liu, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J. R. Simard, and S. L. Chin, Appl. Phys. B 87, 151 (2007).
[CrossRef]

W. Liu, F. Théberge, J.-F. Daigle, P. Simard, S. Sarifi, Y. Kamali, H. Xu, and S. Chin, Appl. Phys. B 85, 55 (2006).
[CrossRef]

S. Tzortzakis, G. Mechain, G. Patalano, M. Franco, B. Prade, and A. Mysyrowicz, Appl. Phys. B 76, 609 (2003).

Appl. Phys. Lett.

F. Theberge, Q. Luo, W. Liu, S. A. Hosseini, M. Sharifi, and S. L. Chin, Appl. Phys. Lett. 87, 081108 (2005).
[CrossRef]

R. Ackermann, E. Salmon, N. Lascoux, J. Kasparian, P. Rohwetter, K. Stelmaszczyk, S. Li, A. Lindinger, L. Woeste, P. Bejot, L. Bonacina, and J.-P. Wolf, Appl. Phys. Lett. 89, 171117 (2006).
[CrossRef]

Eur. Phys. J.: Appl. Phys.

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, Eur. Phys. J.: Appl. Phys. 20, 183 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

V. Tombelaine, P. Leproux, V. Couderc, and A. Barthelemy, IEEE Photon. Technol. Lett. 18, 2466 (2006).
[CrossRef]

Opt. Commun.

G. Mechain, C. D'Amico, Y. B. Andre, S. Tzortzakis, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, E. Salmon, and R. Sauerbrey, Opt. Commun. 247, 171 (2005).
[CrossRef]

A. Couairon, G. Mechain, S. Tzortzakis, M. Franco, B. Lamouroux, B. Prade, and A. Mysyrowicz, Opt. Commun. 225, 177 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E

L. Berge, Phys. Rev. E 69, 065601 (2004).
[CrossRef]

Phys. Rev. Lett.

F. Theberge, N. Akozbek, W. Liu, A. Becker, and S. L. Chin, Phys. Rev. Lett. 97, 023904 (2006).
[CrossRef] [PubMed]

M. Kolesik, J. V. Moloney, and M. Mlejnek, Phys. Rev. Lett. 89, 283902 (2002).
[CrossRef]

Prog. Quantum Electron.

J. H. Marburger, Prog. Quantum Electron. 4, 35 (1977).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Total number of electrons generated in the filament (circles), and filament location (squares) as functions of the delay between the pulses. The plasma filament is created only for optimal delays that ensure conditional dual-pulse collapse.

Fig. 2
Fig. 2

Linear plasma density along the propagation distance for different delays. The length of the filament is about 25 cm , largely independent of the delay.

Fig. 3
Fig. 3

Supercontinuum generation in a conditional femtosecond pulse collapse. If and only if the two pulse overlap such that the resulting collapse distance is shorter than their walk-off distance, strong supercontinua are generated.

Fig. 4
Fig. 4

Spectral broadening for different target beam waists. To achieve supercontinuum generation, the beam waist must be small enough for the self-focusing distance to be smaller than the walk-off distance.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ τ z I k Δ ω ,
2 τ I Δ ω k k w I 2 2 4 P I P c 1 .

Metrics