Abstract

We report on an all-normal-dispersion mode-locked fiber laser based on a large-mode-area Yb-doped microstructure fiber and using a high nonlinear modulation depth semiconductor saturable absorber mirror. The laser delivers 3.3W of average output power with positively chirped 5.5ps pulses at a center wavelength of 1033nm. The pulse repetition rate is 46.4MHz, which results in an energy per pulse of 71nJ. These pulses are extracavity dechirped down to 516fs by using bulk gratings. The average power of the dechirped pulses is 2.3W, which corresponds to a peak power of more than 96kW.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. V. Cautaerts, D. J. Richardson, R. Paschotta, and D. C. Hanna, Opt. Lett. 30, 1888 (1997).
  2. F. Ö. Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, Opt. Lett. 28, 1365 (2003).
    [CrossRef] [PubMed]
  3. B. Ortaç, A. Hideur, T. Chartier, M. Brunel, C. Özkul, and F. Sanchez, Opt. Lett. 28, 1305 (2003).
    [CrossRef] [PubMed]
  4. A. Albert, V. Couderc, L. Lefort, and A. Barthelemy, IEEE Photon. Technol. Lett. 16, 416 (2004).
    [CrossRef]
  5. F. Ö. Ilday, J. Buckley, L. Kuznetsova, and F. W. Wise, Opt. Express 11, 3550 (2003).
    [CrossRef] [PubMed]
  6. K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, Appl. Phys. Lett. 64, 149 (1993).
    [CrossRef]
  7. F. Ö. Ilday, J. R. Buckley, F. W. Wise, and W. G. Clark, Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  8. J. R. Buckley, F. W. Wise, F. Ö. Ilday, and T. Sosnowski, Opt. Lett. 30, 1888 (2005).
    [CrossRef] [PubMed]
  9. B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, Appl. Phys. B 5, 63 (2006).
    [CrossRef]
  10. J. An, D. Kim, J. W. Dawson, M. J. Messerly, and C. P. J. Barty, Opt. Lett. 32, 2010 (2007).
    [CrossRef] [PubMed]
  11. L. M. Zhao, D. Y. Tang, and J. Wu, Opt. Lett. 31, 1788 (2006).
    [CrossRef] [PubMed]
  12. A. Chong, J. Buckley, W. Renninger, and F. Wise, Opt. Express 14, 10095 (2006).
    [CrossRef] [PubMed]
  13. A. Chong, W. Renninger, and F. Wise, Opt. Lett. 32, 2408 (2006).
    [CrossRef]
  14. M. Fermann, A. Galvanauskas, and M. Hofer, Appl. Phys. B 70, S12 (2000).
  15. N. R. G. Broderick, H. L. Offerhaus, D. J. Richardson, and R. A. Sammut, IEEE Photon. Technol. Lett. 10, 1718 (1998).
    [CrossRef]
  16. B. Ortaç, J. Limpert, and A. Tünnermann, Opt. Lett. 32, 2149 (2007).
    [CrossRef] [PubMed]
  17. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, Opt. Express 12, 1313 (2004).
    [CrossRef] [PubMed]
  18. O. Okhotnikov and M. Pessa, J. Phys. Condens. Matter 16, S3107 (2004).
    [CrossRef]

2007

2006

A. Chong, W. Renninger, and F. Wise, Opt. Lett. 32, 2408 (2006).
[CrossRef]

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, Appl. Phys. B 5, 63 (2006).
[CrossRef]

A. Chong, J. Buckley, W. Renninger, and F. Wise, Opt. Express 14, 10095 (2006).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, and J. Wu, Opt. Lett. 31, 1788 (2006).
[CrossRef] [PubMed]

2005

2004

F. Ö. Ilday, J. R. Buckley, F. W. Wise, and W. G. Clark, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

A. Albert, V. Couderc, L. Lefort, and A. Barthelemy, IEEE Photon. Technol. Lett. 16, 416 (2004).
[CrossRef]

J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, Opt. Express 12, 1313 (2004).
[CrossRef] [PubMed]

O. Okhotnikov and M. Pessa, J. Phys. Condens. Matter 16, S3107 (2004).
[CrossRef]

2003

2000

M. Fermann, A. Galvanauskas, and M. Hofer, Appl. Phys. B 70, S12 (2000).

1998

N. R. G. Broderick, H. L. Offerhaus, D. J. Richardson, and R. A. Sammut, IEEE Photon. Technol. Lett. 10, 1718 (1998).
[CrossRef]

1997

1993

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, Appl. Phys. Lett. 64, 149 (1993).
[CrossRef]

Appl. Phys. B

B. Ortaç, A. Hideur, C. Chedot, M. Brunel, G. Martel, and J. Limpert, Appl. Phys. B 5, 63 (2006).
[CrossRef]

M. Fermann, A. Galvanauskas, and M. Hofer, Appl. Phys. B 70, S12 (2000).

Appl. Phys. Lett.

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, Appl. Phys. Lett. 64, 149 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

N. R. G. Broderick, H. L. Offerhaus, D. J. Richardson, and R. A. Sammut, IEEE Photon. Technol. Lett. 10, 1718 (1998).
[CrossRef]

A. Albert, V. Couderc, L. Lefort, and A. Barthelemy, IEEE Photon. Technol. Lett. 16, 416 (2004).
[CrossRef]

J. Phys. Condens. Matter

O. Okhotnikov and M. Pessa, J. Phys. Condens. Matter 16, S3107 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

F. Ö. Ilday, J. R. Buckley, F. W. Wise, and W. G. Clark, Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of the Yb-doped large-mode-area photonic crystal fiber laser.

Fig. 2
Fig. 2

Typical output spectrum on a linear scale. Inset, spectrum on a logarithmic scale.

Fig. 3
Fig. 3

Autocorrelation trace of the output pulses and theoretical fit with a Gaussian pulse profile. Inset, autocorrelation trace on a logarithmic scale.

Fig. 4
Fig. 4

(a) Autocorrelation trace of the dechirped pulses and (b) rf spectrum recorded at the fundamental frequency. The resolution bandwidth of the rf spectrum scan is 300 Hz over a span of 200 kHz .

Fig. 5
Fig. 5

Typical optical spectrum at the laser output. Inset, corresponding dechirped pulse.

Metrics