Abstract

The transition from a photonic band-edge laser to a random laser in two-dimensional active photonic crystals is described. The lasing modes in the active photonic crystals shift from the edge of the photonic bandgap to the bulk of the gap when a certain amount of position and size disorder is introduced. The shift of lasing modes is determined with various gain profiles. The results show that the modulation of lasing modes is significant when the lasing transition wavelength overlaps the photonic bandgap.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, J. Appl. Phys. 75, 1896 (1994).
    [CrossRef]
  2. N. Susa, J. Appl. Phys. 89, 815 (2001).
    [CrossRef]
  3. S. Nojima, J. Appl. Phys. 90, 545 (2001).
    [CrossRef]
  4. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, Appl. Phys. Lett. 75, 316 (1999).
    [CrossRef]
  5. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, Science 293, 1123 (2001).
    [CrossRef] [PubMed]
  6. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, Appl. Phys. Lett. 74, 7 (1999).
    [CrossRef]
  7. A. Mekis, M. Meier, A. Dodabalapur, R. E. Slusher, and J. D. Joannopoulos, Appl. Phys. A 69, 111 (1999).
    [CrossRef]
  8. M. Notomi, H. Suzuki, and T. Tamamura, Appl. Phys. Lett. 78, 1325 (2001).
    [CrossRef]
  9. Z. Y. Li, X. Zhang, and Z.-Q. Zhang, Phys. Rev. B 61, 15738 (2000).
    [CrossRef]
  10. E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, Phys. Rev. B 61, 13458 (2000).
    [CrossRef]
  11. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and D. Turner, Phys. Rev. B 53, 8340 (1996).
    [CrossRef]
  12. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, Phys. Rev. Lett. 82, 2278 (1999).
    [CrossRef]
  13. H. Cao, J. Y. Xu, Y. Ling, A. L. Burin, E. W. Seeling, X. Liu, and R. P. Chang, IEEE J. Sel. Top. Quantum Electron. 9, 111 (2003).
    [CrossRef]
  14. R. M. Balachandran, D. P. Pacheco, and N. M. Lawandy, Appl. Opt. 35, 640 (1996).
    [CrossRef] [PubMed]
  15. X. H. Sun, X. M. Tao, P. Xue, and K. C. Kwan, Chin. Phys. Lasers 22, 2568 (2005).
  16. X. Jiang and C. M. Soukoulis, Phys. Rev. Lett. 85, 70 (2000).
    [CrossRef] [PubMed]
  17. A. Taflove and S. C. Haginess, Computational Electrodynamics: the Finite-Difference Time Domain Method (Artech House, 2000).
  18. P. Sebbah and C. Vanneste, Phys. Rev. B 66, 144202 (2002).
    [CrossRef]
  19. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, J. Appl. Phys. 78, 1415 (1995).
    [CrossRef]

2005 (1)

X. H. Sun, X. M. Tao, P. Xue, and K. C. Kwan, Chin. Phys. Lasers 22, 2568 (2005).

2003 (1)

H. Cao, J. Y. Xu, Y. Ling, A. L. Burin, E. W. Seeling, X. Liu, and R. P. Chang, IEEE J. Sel. Top. Quantum Electron. 9, 111 (2003).
[CrossRef]

2002 (1)

P. Sebbah and C. Vanneste, Phys. Rev. B 66, 144202 (2002).
[CrossRef]

2001 (4)

N. Susa, J. Appl. Phys. 89, 815 (2001).
[CrossRef]

S. Nojima, J. Appl. Phys. 90, 545 (2001).
[CrossRef]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, Science 293, 1123 (2001).
[CrossRef] [PubMed]

M. Notomi, H. Suzuki, and T. Tamamura, Appl. Phys. Lett. 78, 1325 (2001).
[CrossRef]

2000 (3)

Z. Y. Li, X. Zhang, and Z.-Q. Zhang, Phys. Rev. B 61, 15738 (2000).
[CrossRef]

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, Phys. Rev. B 61, 13458 (2000).
[CrossRef]

X. Jiang and C. M. Soukoulis, Phys. Rev. Lett. 85, 70 (2000).
[CrossRef] [PubMed]

1999 (4)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, Phys. Rev. Lett. 82, 2278 (1999).
[CrossRef]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, Appl. Phys. Lett. 74, 7 (1999).
[CrossRef]

A. Mekis, M. Meier, A. Dodabalapur, R. E. Slusher, and J. D. Joannopoulos, Appl. Phys. A 69, 111 (1999).
[CrossRef]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, Appl. Phys. Lett. 75, 316 (1999).
[CrossRef]

1996 (2)

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and D. Turner, Phys. Rev. B 53, 8340 (1996).
[CrossRef]

R. M. Balachandran, D. P. Pacheco, and N. M. Lawandy, Appl. Opt. 35, 640 (1996).
[CrossRef] [PubMed]

1995 (1)

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, J. Appl. Phys. 78, 1415 (1995).
[CrossRef]

1994 (1)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, J. Appl. Phys. 75, 1896 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

A. Mekis, M. Meier, A. Dodabalapur, R. E. Slusher, and J. D. Joannopoulos, Appl. Phys. A 69, 111 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

M. Notomi, H. Suzuki, and T. Tamamura, Appl. Phys. Lett. 78, 1325 (2001).
[CrossRef]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, Appl. Phys. Lett. 75, 316 (1999).
[CrossRef]

M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, Appl. Phys. Lett. 74, 7 (1999).
[CrossRef]

Chin. Phys. Lasers (1)

X. H. Sun, X. M. Tao, P. Xue, and K. C. Kwan, Chin. Phys. Lasers 22, 2568 (2005).

IEEE J. Sel. Top. Quantum Electron. (1)

H. Cao, J. Y. Xu, Y. Ling, A. L. Burin, E. W. Seeling, X. Liu, and R. P. Chang, IEEE J. Sel. Top. Quantum Electron. 9, 111 (2003).
[CrossRef]

J. Appl. Phys. (4)

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, J. Appl. Phys. 78, 1415 (1995).
[CrossRef]

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, J. Appl. Phys. 75, 1896 (1994).
[CrossRef]

N. Susa, J. Appl. Phys. 89, 815 (2001).
[CrossRef]

S. Nojima, J. Appl. Phys. 90, 545 (2001).
[CrossRef]

Phys. Rev. B (4)

Z. Y. Li, X. Zhang, and Z.-Q. Zhang, Phys. Rev. B 61, 15738 (2000).
[CrossRef]

E. Lidorikis, M. M. Sigalas, E. N. Economou, and C. M. Soukoulis, Phys. Rev. B 61, 13458 (2000).
[CrossRef]

M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and D. Turner, Phys. Rev. B 53, 8340 (1996).
[CrossRef]

P. Sebbah and C. Vanneste, Phys. Rev. B 66, 144202 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

X. Jiang and C. M. Soukoulis, Phys. Rev. Lett. 85, 70 (2000).
[CrossRef] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, Phys. Rev. Lett. 82, 2278 (1999).
[CrossRef]

Science (1)

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, Science 293, 1123 (2001).
[CrossRef] [PubMed]

Other (1)

A. Taflove and S. C. Haginess, Computational Electrodynamics: the Finite-Difference Time Domain Method (Artech House, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Emission spectra of active disordered PCs: (a) d x y = 0 , (b) d x y = 0.1 a , (c) d x y = 0.2 a , (d) d x y = 0.3 a , (e) d x y = 0.4 a . (a) Inset, configuration of 2D PC. (b)–(e) Insets, particular configurations of disordered PCs with position disorder.

Fig. 2
Fig. 2

Emission spectra of active disordered PCs: (a) d r = 0.05 a , (b) d r = 0.1 a , (c) d r = 0.15 a , (d) d r = 0.2 a . (a)–(d) Inset, particular configurations of disordered PCs with size disorder.

Fig. 3
Fig. 3

Spatial distribution of the electric field of an active disordered PC recorded at time step t = 650,000 Δ t : (a) d x y = d r = 0 , (b) d x y = 0.4 a , (c) d r = 0.2 a .

Fig. 4
Fig. 4

Plot of the highest-intensity emission peak of active disordered photonic crystals.

Tables (1)

Tables Icon

Table 1 Parameters of the 2D PC and the FDTD Simulation

Metrics