Abstract

A stationary rescaled pulse (SRP) exists in a dispersion-managed comblike profiled fiber (DM-CPF) that consists of alternate concatenations of normal-dispersion highly nonlinear fiber and single-mode fiber. Numerical analysis reveals that the newly found SRP exhibits a nearly Gaussian temporal profile with a small amount of pedestal in spite of a relatively large compression ratio. We apply the SRP propagation to optical pulse compression based on DM-CPF and demonstrate highly efficient and high-quality optical pulse compression. Using a three-step DM-CPF, we experimentally show that a 2.6ps width input pulse is successfully compressed to a nearly Gaussian pulse having the width of 0.39ps and the peak-to-pedestal ratio of 19.3dB.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
    [CrossRef]
  2. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
    [CrossRef]
  3. P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
    [CrossRef]
  4. T. Inoue, H. Tobioka, and S. Namiki, Phys. Rev. E 72, 025601(R) (2005).
    [CrossRef]
  5. T. Inoue, H. Tobioka, K. Igarashi, and S. Namiki, J. Lightwave Technol. 24, 2510 (2006).
    [CrossRef]
  6. M. Takahashi, R. Sugizaki, J. Hiroishi, M. Tadakuma, Y. Taniguchi, and T. Yagi, J. Lightwave Technol. 23, 3615 (2005).
    [CrossRef]
  7. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  8. M. Nakazawa, T. Yamamoto, and K. R. Tamura, Electron. Lett. 36, 2027 (2000).
    [CrossRef]
  9. H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, Electron. Lett. 42, 178 (2006).
    [CrossRef]

2006 (2)

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, Electron. Lett. 42, 178 (2006).
[CrossRef]

T. Inoue, H. Tobioka, K. Igarashi, and S. Namiki, J. Lightwave Technol. 24, 2510 (2006).
[CrossRef]

2005 (2)

2000 (1)

M. Nakazawa, T. Yamamoto, and K. R. Tamura, Electron. Lett. 36, 2027 (2000).
[CrossRef]

1997 (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

1995 (1)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

1991 (1)

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

Appl. Phys. B (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, Appl. Phys. B 65, 277 (1997).
[CrossRef]

Electron. Lett. (2)

M. Nakazawa, T. Yamamoto, and K. R. Tamura, Electron. Lett. 36, 2027 (2000).
[CrossRef]

H. G. Weber, S. Ferber, M. Kroh, C. Schmidt-Langhorst, R. Ludwig, V. Marembert, C. Boerner, F. Futami, S. Watanabe, and C. Schubert, Electron. Lett. 42, 178 (2006).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE J. Quantum Electron. 31, 591 (1995).
[CrossRef]

P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, IEEE J. Quantum Electron. 27, 2347 (1991).
[CrossRef]

J. Lightwave Technol. (2)

Phys. Rev. E (1)

T. Inoue, H. Tobioka, and S. Namiki, Phys. Rev. E 72, 025601(R) (2005).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Waveforms of the obtained SRP. Left: temporal intensity profile (solid curve) and instantaneous frequency (point). Center: autocorrelation trace. Right: spectrum. Upper and lower figures depict the same data in linear and log scales, respectively. Dashed curves represent Gaussian fitting functions.

Fig. 2
Fig. 2

Transitional dynamics of the SRP within d ( z ) . (a) Trajectory of linear chirp parameter C and FWHM Δ t . (b) Temporal intensity profile (solid curve) and its Gaussian fitting (dashed), and instantaneous frequency (points) at z = z 1 . Dotted curve is the temporal profile at z = 0 .

Fig. 3
Fig. 3

Profiles of dispersion (upper) and nonlinearity (middle) of the designed three-step DM-CPF, and measured FWHM of the pulse at the output of each fiber segment (lower).

Fig. 4
Fig. 4

Measured autocorrelation trace (left) and spectrum (right) of the output pulse of the three-step DM-CPF, shown in linear (upper) and log (lower) scales.

Metrics