Abstract

Brillouin amplification with counterpropagating modulated pump and Stokes light leads to nonlinear modulation-phase shifts of the interacting intensity waves. This is due to a partial transformation of the nonmodulated light component at the input into modulated light at the output as a result of a mixing process with the counterpropagating modulated component of the pump and results in an advance or delay of the input modulation. This occurs for interactions over less than half of a modulation wavelength. Milliwatts of power in a kilometer of standard single-mode fiber give significant tunability of the modulation phase.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. Y. Song, M. G. Herraez, and L. Thevanez, Opt. Express 13, 82 (2005).
    [CrossRef] [PubMed]
  2. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  3. A. M. C. Dawes, Z. Zhu, and D. Gauthier, in Conference on Lasers and Electro-Optics (Optical Society of America, 2006), paper CThW1.
  4. Z. Zhu and D. Gauthier, Opt. Express 14, 7238 (2006).
    [CrossRef] [PubMed]
  5. T. Schneider, M. Junker, and K. U. Lauterbach, Opt. Lett. 32, 220 (2007).
    [CrossRef] [PubMed]
  6. K. Y. Song and K. Hotate, Opt. Lett. 32, 217 (2007).
    [CrossRef] [PubMed]
  7. A. Minardo, R. Bernini, and L. Zeni, Opt. Express 14, 5866 (2006).
    [CrossRef] [PubMed]
  8. S. Sternklar and E. Granot, Opt. Lett. 28, 977 (2003).
    [CrossRef] [PubMed]
  9. E. Granot, S. Sternklar, D. Kwiat, and T. Arditi, Opt. Commun. 259, 328 (2006).
    [CrossRef]
  10. S. Sternklar, E. Granot, D. Kwiat, and T. Arditi, Opt. Lett. 31, 2894 (2006).
    [CrossRef] [PubMed]
  11. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
  12. S. Sternklar, T. Arditi, and E. Granot, in Quantum Electronics and Laser Science Conference (Optical Society of America, 2007) paper QTuH3.
  13. T. Schneider, M. Junker, and K. U. Lauterbach, Opt. Express 14, 11082 (2006).
    [CrossRef] [PubMed]
  14. A. G. Streigler and B. Schmauss, IEEE Photon. Technol. Lett. 17, 1310 (2005).
    [CrossRef]
  15. For a review, see A. J. Seeds and K. J. Williams, J. Lightwave Technol. 24, 4628 (2006).
    [CrossRef]

2007

2006

2005

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

K. Y. Song, M. G. Herraez, and L. Thevanez, Opt. Express 13, 82 (2005).
[CrossRef] [PubMed]

A. G. Streigler and B. Schmauss, IEEE Photon. Technol. Lett. 17, 1310 (2005).
[CrossRef]

2003

IEEE Photon. Technol. Lett.

A. G. Streigler and B. Schmauss, IEEE Photon. Technol. Lett. 17, 1310 (2005).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

E. Granot, S. Sternklar, D. Kwiat, and T. Arditi, Opt. Commun. 259, 328 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Other

A. M. C. Dawes, Z. Zhu, and D. Gauthier, in Conference on Lasers and Electro-Optics (Optical Society of America, 2006), paper CThW1.

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).

S. Sternklar, T. Arditi, and E. Granot, in Quantum Electronics and Laser Science Conference (Optical Society of America, 2007) paper QTuH3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Experimental schematic, as described in the text.

Fig. 2
Fig. 2

Experimental results (data points) and comparison with theory (five curves) for the dependence of the modulation phase θ M (normalized to π) on modulation frequency. For the fiber used, K L = π at f 44 kHz . As described in the text, a comparison of the SBS induced ( G 0 ) modulation phase to the linear case ( G = 0 ) shows superluminal propagation (reduced θ M ) for G 1 = 7 , 18 and slow propagation (increased θ M ) for G 2 = 0.7 , 1.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I 1 ( z , t ) z 1 v I 1 ( z , t ) t = I 2 ( z , t ) z + 1 v I 2 ( z , t ) t = g I 1 ( z , t ) I 2 ( z , t )
I 2 ( L , t ) = I 2 ( 0 ) ( 1 + α cos ( K L Ω t ) ) exp ( G 1 ) exp ( G 1 α sinc ( K L ) cos ( Ω t ) ) ,
I 2 Ω ( L , t ) = I 2 Ω cos ( Ω t θ M 2 ) ,
θ M 2 = K L tan 1 ( G 1 sin 2 ( K L ) K L + G 1 sin ( K L ) cos ( K L ) ) .
θ M 2 K L ( 1 + G 1 )
θ M 1 K L + tan 1 ( G 2 K L 1 G 2 ) .

Metrics