Abstract

We demonstrate that resonant high-modulation-depth saturable absorbers allow efficient pulse shortening in Q-switched lasers. Using a 70% modulation depth resonant saturable absorber mirror we achieved 8ns pulses that are close to the limit set by the cavity length and are, to our knowledge, the shortest pulses demonstrated to date from passively Q-switched fiber lasers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. J. Zayhowski and P. L. Kelly, IEEE J. Quantum Electron. 27, 2220 (1991).
    [CrossRef]
  2. J. J. Zayhowski and C. Dill III, Opt. Lett. 19, 1427 (1994).
    [CrossRef] [PubMed]
  3. R. Herda and O. G. Okhotnikov, IEEE J. Quantum Electron. 40, 893 (2004).
    [CrossRef]
  4. R. Herda and O. G. Okhotnikov, Appl. Phys. Lett. 86, 011113 (2005).
    [CrossRef]
  5. E. Garmire, IEEE J. Quantum Electron. 25, 289 (1989).
    [CrossRef]
  6. B. Braun, F. X. Kärtner, G. Zhang, M. Moser, and U. Keller, Opt. Lett. 22, 381 (1997).
    [CrossRef] [PubMed]
  7. M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W. A. Clarkson, S. Girard, and R. Moncorgé, Opt. Lett. 27, 1980 (2002).
    [CrossRef]
  8. T. Hakulinen, R. Herda, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 19, 333 (2007).
    [CrossRef]
  9. R. Paschotta, R. Häring, E. Gini, H. Melchior, U. Keller, H. L. Offerhaus, and D. J. Richardson, Opt. Lett. 24, 388 (1999).
    [CrossRef]

2007

T. Hakulinen, R. Herda, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 19, 333 (2007).
[CrossRef]

2005

R. Herda and O. G. Okhotnikov, Appl. Phys. Lett. 86, 011113 (2005).
[CrossRef]

2004

R. Herda and O. G. Okhotnikov, IEEE J. Quantum Electron. 40, 893 (2004).
[CrossRef]

2002

1999

1997

1994

1991

J. J. Zayhowski and P. L. Kelly, IEEE J. Quantum Electron. 27, 2220 (1991).
[CrossRef]

1989

E. Garmire, IEEE J. Quantum Electron. 25, 289 (1989).
[CrossRef]

Appl. Phys. Lett.

R. Herda and O. G. Okhotnikov, Appl. Phys. Lett. 86, 011113 (2005).
[CrossRef]

IEEE J. Quantum Electron.

E. Garmire, IEEE J. Quantum Electron. 25, 289 (1989).
[CrossRef]

J. J. Zayhowski and P. L. Kelly, IEEE J. Quantum Electron. 27, 2220 (1991).
[CrossRef]

R. Herda and O. G. Okhotnikov, IEEE J. Quantum Electron. 40, 893 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Hakulinen, R. Herda, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 19, 333 (2007).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Low-intensity reflectivity of the resonant semiconductor saturable absorber mirror. The resonant wavelength of the SESAM microcavity is 1043 nm .

Fig. 2
Fig. 2

Duration of the Q-switched pulse depending on the modulation depth of the saturable absorber and cavity length. Solid curves show corresponding results of numerical simulation.

Fig. 3
Fig. 3

Real-time trace from oscilloscope showing 10 ns Q-switched pulse obtained for the laser cavity with round-trip time of 2.5 ns . The x scale is 10 ns per division. The corresponding optical spectrum is shown as an inset.

Fig. 4
Fig. 4

Pulse width and the repetition rate of the Q-switched Yb-fiber laser as a function of the absorbed pump power. Results were obtained with the laser cavity with a round-trip time of 13 ns .

Fig. 5
Fig. 5

Repetition rate versus absorber modulation depth corresponding to the measurement presented in Fig. 2 for the laser cavity with round-trip time of 13 ns . The solid curve represents the f repetition ( Δ R ) 1 dependence expected from the model.

Metrics