Abstract

A simple and very precise group delay ripple (GDR) measurement technique for linearly chirped fiber Bragg gratings (CFBGs) is proposed. It is based on real-time optical Fourier transformation of an ultrashort pulse directly induced by the CFBG dispersion. We have experimentally demonstrated highly accurate characterization of the GDR profile of a commercial 10-m-long CFBG with a dispersion of +2000psnm, having achieved a remarkably small standard deviation in our measurements of about 4ps over a bandwidth of 28nm. The proposed method has the unique potential to provide real-time GDR monitoring (in the MHz range) by use of commercially available high-speed sampling electronics.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. L. R. Kawase, M. C. R. Carvalho, W. Margulis, and R. Kashyap, Electron. Lett. 33, 152 (1997).
    [CrossRef]
  2. J. C. Cartledge, J. Lightwave Technol. 20, 1918 (2002).
    [CrossRef]
  3. M. Sumetsky, P. I. Reyes, P. S. Westbrook, N. M. Litchinitser, B. J. Eggleton, Y. Li, R. Deshmukh, and C. Soccolich, Opt. Lett. 28, 777 (2003).
    [CrossRef] [PubMed]
  4. P. I. Reyes, M. Sumetsky, N. M. Litchinitser, and P. S. Westbrook, Opt. Express 12, 2676 (2004).
    [CrossRef] [PubMed]
  5. T. Niemi, M. Uusimaa, and H. Ludvigsen, IEEE Photon. Technol. Lett. 13, 1334 (2001).
    [CrossRef]
  6. S. D. Dyer and K. B. Rochford, Electron. Lett. 35, 1485 (1999).
    [CrossRef]
  7. D. K. Gifford, B. J. Soller, M. S. Wolfe, and M. E. Froggatt, Appl. Opt. 44, 7282 (2005).
    [CrossRef] [PubMed]
  8. J. Azaña and M. A. Muriel, IEEE J. Quantum Electron. 36, 517 (2000).
    [CrossRef]
  9. Y. Park, T.-J. Ahn, J.-C. Kieffer, and J. Azaña, Opt. Express 15, 4597 (2007).
    [CrossRef] [PubMed]
  10. T.-J. Ahn, J. Y. Lee, and D. Y. Kim, Appl. Opt. 44, 7630 (2005).
    [CrossRef] [PubMed]

2007 (1)

2005 (2)

2004 (1)

2003 (1)

2002 (1)

2001 (1)

T. Niemi, M. Uusimaa, and H. Ludvigsen, IEEE Photon. Technol. Lett. 13, 1334 (2001).
[CrossRef]

2000 (1)

J. Azaña and M. A. Muriel, IEEE J. Quantum Electron. 36, 517 (2000).
[CrossRef]

1999 (1)

S. D. Dyer and K. B. Rochford, Electron. Lett. 35, 1485 (1999).
[CrossRef]

1997 (1)

L. R. Kawase, M. C. R. Carvalho, W. Margulis, and R. Kashyap, Electron. Lett. 33, 152 (1997).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (2)

S. D. Dyer and K. B. Rochford, Electron. Lett. 35, 1485 (1999).
[CrossRef]

L. R. Kawase, M. C. R. Carvalho, W. Margulis, and R. Kashyap, Electron. Lett. 33, 152 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Azaña and M. A. Muriel, IEEE J. Quantum Electron. 36, 517 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Niemi, M. Uusimaa, and H. Ludvigsen, IEEE Photon. Technol. Lett. 13, 1334 (2001).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the GDR measurement for a linearly chirped fiber Bragg grating (CFBG): FFL, femtosecond fiber laser; AMP, optical amplifier; PD, photodiode; PC, polarization controller; DUT, device under test.

Fig. 2
Fig. 2

(a) Input spectra of femotosecond pulses with three different center wavelengths and (b) their corresponding temporal interferograms

Fig. 3
Fig. 3

GDRs of the CFBG measured by (a) LUNA OVA (optical vector analyzer) and (b) RT-OFT-based method with a 15-times-averaging process. The gray zone shows the overlapped plots with an averaged data line (black curve).

Metrics