Abstract

By employing the self-modulation birefringence difference in a semiconductor optical amplifier (SOA), an improved method is proposed to generate a complete optical single-sideband (OSSB) signal. Over 30dB sideband suppression ratios (SSRs) of lower OSSB signals are obtained over a 12dB input power range and a 36nm wavelength span, with a maximum of over 35dB. Upper OSSB signals with an SSR of over 15dB are observed using a SOA for what is believed to be the first time. This method is effective even for the carrier-suppressed signal. The theory for OSSB generation in an SOA is extended and verified by experiment.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. J. Seeds, IEEE Trans. Microwave Theory Tech. 50, 877 (2002).
    [CrossRef]
  2. G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
    [CrossRef]
  3. B. Davies and J. Conrad, IEEE Photon. Technol. Lett. 10, 600 (1998).
    [CrossRef]
  4. J. Park, W. V. Sorin, and K. Y. Lau, Electron. Lett. 33, 512 (1997).
    [CrossRef]
  5. E. Vourc'h and D. Hervé, Opt. Lett. 28, 1105 (2003).
    [CrossRef] [PubMed]
  6. S. M. R. Motaghian Nezam, A. Sahin, J. McGeehan, Z. Pan, T. Luo, Y. Song, and A. Willner, in Digest of Optical Fiber Communication Conference (Optical Society of America, 2003), paper FM7.
  7. U.-S. Lee, H. Jung, and S. Han, IEEE Photon. Technol. Lett. 16, 1373 (2004).
    [CrossRef]
  8. L.-S. Yan and A. E. Willner, in Digest of Optical Fiber Communication Conference (Optical Society of America, 2003), paper MF58.
  9. K. Lee, K. Park, and W. Choi, Opt. Eng. 43, 2715 (2004).
    [CrossRef]

2004

U.-S. Lee, H. Jung, and S. Han, IEEE Photon. Technol. Lett. 16, 1373 (2004).
[CrossRef]

K. Lee, K. Park, and W. Choi, Opt. Eng. 43, 2715 (2004).
[CrossRef]

2003

2002

A. J. Seeds, IEEE Trans. Microwave Theory Tech. 50, 877 (2002).
[CrossRef]

1998

B. Davies and J. Conrad, IEEE Photon. Technol. Lett. 10, 600 (1998).
[CrossRef]

1997

J. Park, W. V. Sorin, and K. Y. Lau, Electron. Lett. 33, 512 (1997).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
[CrossRef]

Electron. Lett.

J. Park, W. V. Sorin, and K. Y. Lau, Electron. Lett. 33, 512 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

U.-S. Lee, H. Jung, and S. Han, IEEE Photon. Technol. Lett. 16, 1373 (2004).
[CrossRef]

B. Davies and J. Conrad, IEEE Photon. Technol. Lett. 10, 600 (1998).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

A. J. Seeds, IEEE Trans. Microwave Theory Tech. 50, 877 (2002).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, IEEE Trans. Microwave Theory Tech. 45, 1410 (1997).
[CrossRef]

Opt. Eng.

K. Lee, K. Park, and W. Choi, Opt. Eng. 43, 2715 (2004).
[CrossRef]

Opt. Lett.

Other

S. M. R. Motaghian Nezam, A. Sahin, J. McGeehan, Z. Pan, T. Luo, Y. Song, and A. Willner, in Digest of Optical Fiber Communication Conference (Optical Society of America, 2003), paper FM7.

L.-S. Yan and A. E. Willner, in Digest of Optical Fiber Communication Conference (Optical Society of America, 2003), paper MF58.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic curves of (a) input signal power versus SSR and (b) input signal power versus output phase shift of the carrier and ± 1 -order sidebands when m = 0.35 in simulation.

Fig. 2
Fig. 2

Principle of the proposed OSSB generation. PC, polarization controller.

Fig. 3
Fig. 3

Experimental setup for the proposed OSSB generation. LD, laser diode; PC1–PC3, polarization controllers; EDFA, erbium-doped fiber amplifier; MZM, Mach–Zehnder modulator; BPF, optical bandpass filter.

Fig. 4
Fig. 4

Spectra of input ODSB signal, the lower OSSB signal for the setup without polarizer, with polarizer, and upper OSSB signal (1, 2, 3, and 4, respectively) for (a) m = 0.15 , (b) m = 0.35 , (c) m > 1 .

Fig. 5
Fig. 5

(a) Measured SSR and OSNR degradation of the 1 -order sideband as a function of input signal power. (b) Measured SSR as a function of optical carrier wavelength when m = 0.35 .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) = E 0 [ 1 + m 2 sin ( ω m t ) ] exp { i [ ω 0 t + ε m 2 sin ( ω m t + β ) ] } ,
E ( t ) = E 0 [ 1 + m 2 sin ( ω m t ) ] exp { i ω 0 t + ( 1 + i α ) m 2 η P eff sin ( ω m t + β ) } .
E ω 0 ± ω m i m 4 E 0 J 0 ( χ ) { 1 + ρ exp [ j ( θ ± β ) ] } ,
SSR = E ω 0 ω m E ω 0 + ω m 2 1 + ρ exp [ j ( θ β ) ] 1 ρ exp [ j ( θ + β π ) ] 2 .
P eff opt = ( 1 + α 2 ) 1 2 { η cos [ a r tan ( α ) a r tan ( ω m τ eff ) ] } 1 ,

Metrics