Abstract

We report results of transient two-wave mixing (TWM) in Er-doped fibers with saturable absorption in a linear configuration of an adaptive interferometric vibrometer with essentially different powers of recording waves. The TWM signal modulation depth detected in the weak (reflected) wave was shown to be twice as strong as in the symmetric configuration with equal recording powers. In accordance with theoretical predictions, the experimentally observed TWM signal amplitude grew continuously with the fiber optical density in the whole investigated range of α0L0.24. At the recording wavelength 1492nm it proved to be quite close to the theoretical limit of α0L2 for weakly absorbing fibers, and in 1-m-long fiber of high optical density reached maximal value of 0.8. The TWM response time went down with the recording light power and for P010mW was in the submillisecond region.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Stepanov, E. Hernández, and M. Plata, Opt. Lett. 29, 1327 (2004).
    [CrossRef] [PubMed]
  2. R. J. Dewhurst and Q. Shan, Meas. Sci. Technol. 10, R139 (1999).
    [CrossRef]
  3. S. Frisken, Opt. Lett. 17, 1776 (1992).
    [CrossRef] [PubMed]
  4. M. D. Feuer, IEEE Photon. Technol. Lett. 10, 1587 (1998).
    [CrossRef]
  5. S. A. Havstad, B. Fischer, A. E. Willner, and M. G. Wickham, Opt. Lett. 24, 1466 (1999).
    [CrossRef]
  6. M. Horowitz, R. Daisy, B. Fischer, and J. Zyskind, Electron. Lett. 30, 648 (1994).
    [CrossRef]
  7. R. Paschotta, J. Nilsson, L. Reekie, A. C. Trooper, and D. C. Hanna, Opt. Lett. 22, 41 (1997).
    [CrossRef]
  8. S. Norcia-Molin, S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, and R. Frey, Opt. Lett. 31, 299 (2006).
    [CrossRef] [PubMed]
  9. D. García Casillas, S. Stepanov, and M. Plata Sanchez, Rev. Mex. Fis. 53, 144 (2007).
  10. S. Stepanov, A. Fotiadi, and P. Mégret, Opt. Express 15, 8832 (2007).
    [CrossRef] [PubMed]
  11. Yu. O. Barmenkov, A. V. Kir'yanov, and M. V. Andrés, IEEE J. Quantum Electron. 41, 1176 (2005).
    [CrossRef]
  12. S. Stepanov and E. Hernández, Opt. Commun. 271, 91 (2006).
    [CrossRef]
  13. S. Stepanov and C. Nuñez Santiago, Opt. Commun. 264, 105 (2006).
    [CrossRef]
  14. S. Stepanov and E. Hernández, Opt. Lett. 30, 1926 (2005).
    [CrossRef] [PubMed]
  15. A. V. Kir'yanov, Yu. O. Barmenkov, and N. N. Il'ichev, Opt. Express 13, 8498 (2005).
    [CrossRef] [PubMed]

2007 (2)

D. García Casillas, S. Stepanov, and M. Plata Sanchez, Rev. Mex. Fis. 53, 144 (2007).

S. Stepanov, A. Fotiadi, and P. Mégret, Opt. Express 15, 8832 (2007).
[CrossRef] [PubMed]

2006 (3)

S. Stepanov and E. Hernández, Opt. Commun. 271, 91 (2006).
[CrossRef]

S. Stepanov and C. Nuñez Santiago, Opt. Commun. 264, 105 (2006).
[CrossRef]

S. Norcia-Molin, S. Tonda-Goldstein, D. Dolfi, J.-P. Huignard, and R. Frey, Opt. Lett. 31, 299 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (1)

1999 (2)

1998 (1)

M. D. Feuer, IEEE Photon. Technol. Lett. 10, 1587 (1998).
[CrossRef]

1997 (1)

R. Paschotta, J. Nilsson, L. Reekie, A. C. Trooper, and D. C. Hanna, Opt. Lett. 22, 41 (1997).
[CrossRef]

1994 (1)

M. Horowitz, R. Daisy, B. Fischer, and J. Zyskind, Electron. Lett. 30, 648 (1994).
[CrossRef]

1992 (1)

Electron. Lett. (1)

M. Horowitz, R. Daisy, B. Fischer, and J. Zyskind, Electron. Lett. 30, 648 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

Yu. O. Barmenkov, A. V. Kir'yanov, and M. V. Andrés, IEEE J. Quantum Electron. 41, 1176 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. D. Feuer, IEEE Photon. Technol. Lett. 10, 1587 (1998).
[CrossRef]

Meas. Sci. Technol. (1)

R. J. Dewhurst and Q. Shan, Meas. Sci. Technol. 10, R139 (1999).
[CrossRef]

Opt. Commun. (2)

S. Stepanov and E. Hernández, Opt. Commun. 271, 91 (2006).
[CrossRef]

S. Stepanov and C. Nuñez Santiago, Opt. Commun. 264, 105 (2006).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

Rev. Mex. Fis. (1)

D. García Casillas, S. Stepanov, and M. Plata Sanchez, Rev. Mex. Fis. 53, 144 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of a linear interferometric vibrometer utilized for investigation of the transient TWM in EDFs. The inset shows normalized signal profiles observed for rectangular modulation with amplitude a, U π and b, U π 4 ( 0.5 m long Er103 fiber, P 0 = 3.3 mW , averaging over 512 oscilloscope traces).

Fig. 2
Fig. 2

(a) Experimental dependences of the TWM signal relative amplitude on the input recording power P 0 observed in 0.5 (squares), 2.1 (triangles), and 8.5 m (circles) long fibers (for evaluated values of r = 0.4 , 0.7, and 0.2, respectively). The continuous curves represent theoretical dependences calculated for α 0 L = 0.21 , 0.86, and 3.6 for coupling coefficients r = 0.01 , 0.2, 0.4 (solid, dashed, and dotted curves, respectively). The dashed–dotted curve shows the theoretical curve for the symmetric recording configuration calculated for α 0 L = 0.21 . (b) Experimental dependence of the maximal TWM signal amplitude on the optical density of Er103 fiber samples. The continuous curves, represent theoretical curves calculated for r = 0.01 , 0.1, and 1 (solid, dashed, and dotted curves, respectively), and the straight solid line shows the approximation obtained for α 0 L 0 and r 0 . The triangles present data for Er123 1 m long fiber in linear (filled symbol) and in symmetric [12] (empty symbol) configurations. All experiments were performed with U mod = U π .

Fig. 3
Fig. 3

Experimental dependences of TWM signal decay rate τ g 1 on incident light power P 0 observed in 0.5 m (triangles) and 4.1 m (squares) long samples of Er103 fiber ( r = 0.4 and 0.15: empty and filled symbols, respectively).

Metrics