Abstract

A fluorescence correlation spectroscopy experiment that combines two-photon excitation and a standing-wave interference pattern is presented. The experimental correlation function can be analyzed using a simple expression involving (1) an exponential decay with time constant τf, which reflects diffusion across the interference fringes, and (2) a longer-lived decay with time constant τω, which reflects diffusion in and out of the focal spot. The diffusion of Rhodamine 110 in water and ethylene glycol is measured using this method. The ability to simultaneously measure diffusion on two different time and lengthscales makes this experiment especially useful in environments where anomalous diffusion is suspected.

© 2007 Optical Society of America

Full Article  |  PDF Article

Corrections

Kerry M. Hanson, Sara K. Davis, and Christopher J. Bardeen, "Two-photon standing-wave fluorescence correlation spectroscopy: erratum," Opt. Lett. 32, 3308-3308 (2007)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-32-22-3308

References

  • View by:
  • |
  • |

  1. M. P. Sheetz, S. Turney, H. Qian, and E. L. Elson, Nature 340, 284 (1989).
    [CrossRef] [PubMed]
  2. T. Schmidt, G. J. Schutz, W. Baumgartner, H. J. Gruber, and H. Schindler, Proc. Natl. Acad. Sci. U.S.A. 93, 2926 (1996).
    [CrossRef] [PubMed]
  3. A. Yildiz, J. N. Forkey, S. A. Mckinney, T. Ha, Y. E. Goldman, and P. R. Selvin, Science 300, 2061 (2003).
    [CrossRef] [PubMed]
  4. V. Levi, Q. Ruan, M. Plutz, A. S. Belmont, and E. Gratton, Biophys. J. 89, 4275 (2005).
    [CrossRef] [PubMed]
  5. D. Magde, E. Elson, and W. W. Webb, Phys. Rev. Lett. 29, 705 (1972).
    [CrossRef]
  6. E. L. Elson and D. Magde, Biopolymers 13, 1 (1974).
    [CrossRef]
  7. E. L. Elson, D. Magde, and W. W. Webb, Biopolymers 13, 29 (1974).
    [CrossRef] [PubMed]
  8. S. Maiti, U. Haupts, and W. W. Webb, Proc. Natl. Acad. Sci. U.S.A. 94, 11753 (1997).
    [CrossRef] [PubMed]
  9. K. M. Berland, P. T. C. So, and E. Gratton, Biophys. J. 68, 694 (1995).
    [CrossRef] [PubMed]
  10. P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, Biophys. J. 77, 2251 (1999).
    [CrossRef] [PubMed]
  11. M. Hattori, H. Shimizu, and H. Yokoyama, Rev. Sci. Instrum. 67, 4064 (1996).
    [CrossRef]
  12. R. L. Hansen, X. R. Zhu, and J. M. Harris, Anal. Chem. 70, 1281 (1998).
    [CrossRef] [PubMed]
  13. T. Sonehara, K. Kojima, and T. Irie, Anal. Chem. 74, 5121 (2002).
    [CrossRef] [PubMed]
  14. P.-F. Lenne, E. Etienne, and H. Rigneault, Appl. Phys. Lett. 80, 4106 (2002).
    [CrossRef]
  15. H. Rigneault and P.-F. Lenne, J. Opt. Soc. Am. B 20, 2203 (2003).
    [CrossRef]
  16. D. Margineantu, R. A. Capaldi, and A. H. Marcus, Biophys. J. 79, 1833 (2000).
    [CrossRef] [PubMed]
  17. S. Hell and E. H. K. Stelzer, J. Opt. Soc. Am. B 9, 2159 (1992).
  18. A. Egner, S. Jakobs, and S. W. Hell, Proc. Natl. Acad. Sci. U.S.A. 99, 3370 (2002).
    [CrossRef] [PubMed]
  19. J. Chen and K. Midorikawa, Opt. Lett. 29, 1354 (2004).
    [CrossRef] [PubMed]
  20. S. K. Davis and C. J. Bardeen, Rev. Sci. Instrum. 73, 2128 (2002).
    [CrossRef]
  21. S. K. Davis and C. J. Bardeen, Biophys. J. 86, 555 (2004).
    [CrossRef]
  22. E. B. Brown, E. S. Wu, W. Zipfel, and W. W. Webb, Biophys. J. 77, 2837 (1999).
    [CrossRef] [PubMed]
  23. J. D. Müller, Y. Chen, and E. Gratton, Methods Enzymol. 361, 69 (2003).
    [CrossRef] [PubMed]
  24. W. S. Jones and W. S. Pamplin, in Glycols, G.O.Curme and F.Johnston, eds. (Reinhold, 1953), p. 57.
  25. M. Lim and C. Saloma, Appl. Opt. 42, 3398 (2003).
    [CrossRef] [PubMed]

2005 (1)

V. Levi, Q. Ruan, M. Plutz, A. S. Belmont, and E. Gratton, Biophys. J. 89, 4275 (2005).
[CrossRef] [PubMed]

2004 (2)

J. Chen and K. Midorikawa, Opt. Lett. 29, 1354 (2004).
[CrossRef] [PubMed]

S. K. Davis and C. J. Bardeen, Biophys. J. 86, 555 (2004).
[CrossRef]

2003 (4)

J. D. Müller, Y. Chen, and E. Gratton, Methods Enzymol. 361, 69 (2003).
[CrossRef] [PubMed]

M. Lim and C. Saloma, Appl. Opt. 42, 3398 (2003).
[CrossRef] [PubMed]

A. Yildiz, J. N. Forkey, S. A. Mckinney, T. Ha, Y. E. Goldman, and P. R. Selvin, Science 300, 2061 (2003).
[CrossRef] [PubMed]

H. Rigneault and P.-F. Lenne, J. Opt. Soc. Am. B 20, 2203 (2003).
[CrossRef]

2002 (4)

T. Sonehara, K. Kojima, and T. Irie, Anal. Chem. 74, 5121 (2002).
[CrossRef] [PubMed]

P.-F. Lenne, E. Etienne, and H. Rigneault, Appl. Phys. Lett. 80, 4106 (2002).
[CrossRef]

A. Egner, S. Jakobs, and S. W. Hell, Proc. Natl. Acad. Sci. U.S.A. 99, 3370 (2002).
[CrossRef] [PubMed]

S. K. Davis and C. J. Bardeen, Rev. Sci. Instrum. 73, 2128 (2002).
[CrossRef]

2000 (1)

D. Margineantu, R. A. Capaldi, and A. H. Marcus, Biophys. J. 79, 1833 (2000).
[CrossRef] [PubMed]

1999 (2)

P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, Biophys. J. 77, 2251 (1999).
[CrossRef] [PubMed]

E. B. Brown, E. S. Wu, W. Zipfel, and W. W. Webb, Biophys. J. 77, 2837 (1999).
[CrossRef] [PubMed]

1998 (1)

R. L. Hansen, X. R. Zhu, and J. M. Harris, Anal. Chem. 70, 1281 (1998).
[CrossRef] [PubMed]

1997 (1)

S. Maiti, U. Haupts, and W. W. Webb, Proc. Natl. Acad. Sci. U.S.A. 94, 11753 (1997).
[CrossRef] [PubMed]

1996 (2)

T. Schmidt, G. J. Schutz, W. Baumgartner, H. J. Gruber, and H. Schindler, Proc. Natl. Acad. Sci. U.S.A. 93, 2926 (1996).
[CrossRef] [PubMed]

M. Hattori, H. Shimizu, and H. Yokoyama, Rev. Sci. Instrum. 67, 4064 (1996).
[CrossRef]

1995 (1)

K. M. Berland, P. T. C. So, and E. Gratton, Biophys. J. 68, 694 (1995).
[CrossRef] [PubMed]

1992 (1)

1989 (1)

M. P. Sheetz, S. Turney, H. Qian, and E. L. Elson, Nature 340, 284 (1989).
[CrossRef] [PubMed]

1974 (2)

E. L. Elson and D. Magde, Biopolymers 13, 1 (1974).
[CrossRef]

E. L. Elson, D. Magde, and W. W. Webb, Biopolymers 13, 29 (1974).
[CrossRef] [PubMed]

1972 (1)

D. Magde, E. Elson, and W. W. Webb, Phys. Rev. Lett. 29, 705 (1972).
[CrossRef]

Anal. Chem. (2)

R. L. Hansen, X. R. Zhu, and J. M. Harris, Anal. Chem. 70, 1281 (1998).
[CrossRef] [PubMed]

T. Sonehara, K. Kojima, and T. Irie, Anal. Chem. 74, 5121 (2002).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P.-F. Lenne, E. Etienne, and H. Rigneault, Appl. Phys. Lett. 80, 4106 (2002).
[CrossRef]

Biophys. J. (6)

D. Margineantu, R. A. Capaldi, and A. H. Marcus, Biophys. J. 79, 1833 (2000).
[CrossRef] [PubMed]

V. Levi, Q. Ruan, M. Plutz, A. S. Belmont, and E. Gratton, Biophys. J. 89, 4275 (2005).
[CrossRef] [PubMed]

K. M. Berland, P. T. C. So, and E. Gratton, Biophys. J. 68, 694 (1995).
[CrossRef] [PubMed]

P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, Biophys. J. 77, 2251 (1999).
[CrossRef] [PubMed]

S. K. Davis and C. J. Bardeen, Biophys. J. 86, 555 (2004).
[CrossRef]

E. B. Brown, E. S. Wu, W. Zipfel, and W. W. Webb, Biophys. J. 77, 2837 (1999).
[CrossRef] [PubMed]

Biopolymers (2)

E. L. Elson and D. Magde, Biopolymers 13, 1 (1974).
[CrossRef]

E. L. Elson, D. Magde, and W. W. Webb, Biopolymers 13, 29 (1974).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (2)

Methods Enzymol. (1)

J. D. Müller, Y. Chen, and E. Gratton, Methods Enzymol. 361, 69 (2003).
[CrossRef] [PubMed]

Nature (1)

M. P. Sheetz, S. Turney, H. Qian, and E. L. Elson, Nature 340, 284 (1989).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

D. Magde, E. Elson, and W. W. Webb, Phys. Rev. Lett. 29, 705 (1972).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (3)

T. Schmidt, G. J. Schutz, W. Baumgartner, H. J. Gruber, and H. Schindler, Proc. Natl. Acad. Sci. U.S.A. 93, 2926 (1996).
[CrossRef] [PubMed]

S. Maiti, U. Haupts, and W. W. Webb, Proc. Natl. Acad. Sci. U.S.A. 94, 11753 (1997).
[CrossRef] [PubMed]

A. Egner, S. Jakobs, and S. W. Hell, Proc. Natl. Acad. Sci. U.S.A. 99, 3370 (2002).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

S. K. Davis and C. J. Bardeen, Rev. Sci. Instrum. 73, 2128 (2002).
[CrossRef]

M. Hattori, H. Shimizu, and H. Yokoyama, Rev. Sci. Instrum. 67, 4064 (1996).
[CrossRef]

Science (1)

A. Yildiz, J. N. Forkey, S. A. Mckinney, T. Ha, Y. E. Goldman, and P. R. Selvin, Science 300, 2061 (2003).
[CrossRef] [PubMed]

Other (1)

W. S. Jones and W. S. Pamplin, in Glycols, G.O.Curme and F.Johnston, eds. (Reinhold, 1953), p. 57.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

a, Schematic of the 2PSWFCS experiment. Ti:sapphire laser pulses of 800 nm are focused through two 40 × microscope objectives in a counterpropagating geometry. A standing-wave interference pattern is created at the focus. Diffusion of fluorescent particles into and out of the focal volume, as well as through the interference pattern, creates fluctuations in the fluorescence signal. b, One-beam FCS and 2PSWFCS data of 10 nm R110 in water. The τ ω components of both scans overlap completely. The short τ f component ( 10 6 to 10 5 s ) in the two-beam data shows the contribution from diffusion between the interference fringes, which is absent from the single-beam data.

Fig. 2
Fig. 2

Linear plot of the one-beam FCS and 2PSWFCS short-time component of R110 in a, water and b, EG showing the exponential decay typical of the two-beam interference pattern.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

δ F ( t ) δ F ( t + τ ) = d x d y d z d x d y d z I 2 ( x , y , z ) I 2 ( x , y , z ) δ C ( x , y , z , 0 ) δ C ( x , y , z , τ ) ,
δ C ( x , y , z , 0 ) δ C ( x , y , z , τ ) = C ( 4 π D t ) 3 2 exp [ ( x x 2 + y y 2 + z z 2 ) 4 D t ] ,
I 2 = α 2 ( 2 P π ω 0 2 ) 2 exp [ 4 ( x 2 + y 2 ) ω 0 2 4 z 2 z 0 2 ] [ 3 + 4 cos ( 2 k z ) + cos ( 4 k z ) ] ,
G ( τ ) = 1 18 C 1 V e f f ( 1 + τ τ ω ) 1 [ 18 + 16 exp [ τ τ f ] + exp [ 4 τ τ f ] ] ,
τ ω = ω 0 2 8 D ,
τ ω = 1 4 k 2 D ,

Metrics