Abstract

We present tamper resistance in optical excitation transfer via optical near-field interactions based on the energy dissipation process occurring locally in nanometric devices such as quantum dots. A theoretical comparison with electrical systems is also shown, focusing on the required environmental conditions. Numerical simulations based on virtual photon models demonstrate high tamper resistance.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
    [CrossRef]
  2. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
    [CrossRef] [PubMed]
  3. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
    [CrossRef] [PubMed]
  4. T. Yatsui, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, Appl. Phys. Lett. 87, 033101 (2005).
    [CrossRef]
  5. T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, and M. Ohtsu, Appl. Phys. B 84, 243 (2006).
    [CrossRef]
  6. For example, http://www.cryptography.com/resources/whitepapers/DPATechInfo.pdf.
  7. H. Hori, in Optical and Electronic Process of Nano-Matters, M.Ohtsu, ed. (Kluwer Academic, 2001), p. 1.
  8. G.-L. Ingold and Y. V. Nazarov, in Single Charge Tunneling, H.Grabert and M.H.Devoret, eds. (Plenum, 1992), p. 21.
  9. K. Kobayashi and M. Ohtsu, J. Microsc. 194, 249 (1999).
    [CrossRef]

2006

T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, and M. Ohtsu, Appl. Phys. B 84, 243 (2006).
[CrossRef]

2005

T. Yatsui, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, Appl. Phys. Lett. 87, 033101 (2005).
[CrossRef]

2003

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
[CrossRef] [PubMed]

2002

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

2001

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef] [PubMed]

1999

K. Kobayashi and M. Ohtsu, J. Microsc. 194, 249 (1999).
[CrossRef]

Akahane, K.

T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, and M. Ohtsu, Appl. Phys. B 84, 243 (2006).
[CrossRef]

An, S. J.

T. Yatsui, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, Appl. Phys. Lett. 87, 033101 (2005).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
[CrossRef] [PubMed]

Feick, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef] [PubMed]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
[CrossRef] [PubMed]

Hori, H.

H. Hori, in Optical and Electronic Process of Nano-Matters, M.Ohtsu, ed. (Kluwer Academic, 2001), p. 1.

Huang, M. H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef] [PubMed]

Ingold, G.-L.

G.-L. Ingold and Y. V. Nazarov, in Single Charge Tunneling, H.Grabert and M.H.Devoret, eds. (Plenum, 1992), p. 21.

Kawazoe, T.

T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, and M. Ohtsu, Appl. Phys. B 84, 243 (2006).
[CrossRef]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
[CrossRef] [PubMed]

Kind, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef] [PubMed]

Kobayashi, K.

T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, and M. Ohtsu, Appl. Phys. B 84, 243 (2006).
[CrossRef]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

K. Kobayashi and M. Ohtsu, J. Microsc. 194, 249 (1999).
[CrossRef]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
[CrossRef] [PubMed]

Mao, S.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef] [PubMed]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
[CrossRef] [PubMed]

Naruse, M.

T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, and M. Ohtsu, Appl. Phys. B 84, 243 (2006).
[CrossRef]

Nazarov, Y. V.

G.-L. Ingold and Y. V. Nazarov, in Single Charge Tunneling, H.Grabert and M.H.Devoret, eds. (Plenum, 1992), p. 21.

Ohtsu, M.

T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, and M. Ohtsu, Appl. Phys. B 84, 243 (2006).
[CrossRef]

T. Yatsui, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, Appl. Phys. Lett. 87, 033101 (2005).
[CrossRef]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

K. Kobayashi and M. Ohtsu, J. Microsc. 194, 249 (1999).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
[CrossRef] [PubMed]

Russo, R.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef] [PubMed]

Sangu, S.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

Weber, E.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef] [PubMed]

Wu, Y.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef] [PubMed]

Yamamoto, N.

T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, and M. Ohtsu, Appl. Phys. B 84, 243 (2006).
[CrossRef]

Yan, H.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef] [PubMed]

Yang, P.

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef] [PubMed]

Yatsui, T.

T. Yatsui, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, Appl. Phys. Lett. 87, 033101 (2005).
[CrossRef]

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

Yi, G.-C.

T. Yatsui, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, Appl. Phys. Lett. 87, 033101 (2005).
[CrossRef]

Yoo, J.

T. Yatsui, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, Appl. Phys. Lett. 87, 033101 (2005).
[CrossRef]

Appl. Phys. B

T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, and M. Ohtsu, Appl. Phys. B 84, 243 (2006).
[CrossRef]

Appl. Phys. Lett.

T. Yatsui, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, Appl. Phys. Lett. 87, 033101 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, IEEE J. Sel. Top. Quantum Electron. 8, 839 (2002).
[CrossRef]

J. Microsc.

K. Kobayashi and M. Ohtsu, J. Microsc. 194, 249 (1999).
[CrossRef]

Nat. Mater.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, Nat. Mater. 2, 229 (2003).
[CrossRef] [PubMed]

Science

M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).
[CrossRef] [PubMed]

Other

For example, http://www.cryptography.com/resources/whitepapers/DPATechInfo.pdf.

H. Hori, in Optical and Electronic Process of Nano-Matters, M.Ohtsu, ed. (Kluwer Academic, 2001), p. 1.

G.-L. Ingold and Y. V. Nazarov, in Single Charge Tunneling, H.Grabert and M.H.Devoret, eds. (Plenum, 1992), p. 21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Model of tamper resistance in devices based on (a) optical excitation transfer, (b) single charge tunneling, and (c) transistor. Dotted curves show the scale of a key device, and dashed curves show the scale of the environment required for the system to work. In (a), an exciton can move from QD A to QD B via optical near-field interactions and sublevel relaxation.

Fig. 2
Fig. 2

Tamper resistance in optical excitation transfer system. (a) Physical model based on virtual photon model. (b), (c) Evolution of population of B1-level without QD C (solid curve), B1-level with QD C (dashed curve), and C1-level (dotted curve).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H ̂ int = ψ ̂ ( r ) μ ψ ̂ ( r ) D ̂ ( r ) d r ,
E ( n x , n y , n z ) = E B + 2 π 2 2 M L 2 ( n x 2 + n y 2 + n z 2 ) ,
δ Q 2 = e 2 4 ρ coth ( β ϖ s 2 ) ,
Γ = 2 π g ( ω ) 2 D ( ω ) ,

Metrics