Abstract

We propose a novel method for effective simulation of optical fiber transmission system performance with nonlinear interaction between the amplified spontaneous emission noise and the modulated optical signal employing on–off keying. The method enables a standard analytical description of the receiver operation even when the detected optical field obeys non-Gaussian statistics with a substantial amount of nonlinear phase noise accumulated along the fiber link due to strong signal–noise interaction.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Hui, M. O'Sullivan, A. Robinson, and M. Taylor, J. Lightwave Technol. 15, 1071 (1997).
    [CrossRef]
  2. M. Secondini, E. Forestieri, and C. R. Menyuk, in Optical Fiber Communication Conference (Optical Society of America, 2006), paper OThD3.
  3. R. Holzlöhner, V. S. Grigoryan, C. R. Menyuk, and W. L. Kath, J. Lightwave Technol. 20, 389 (2002).
    [CrossRef]
  4. R. Holzlöhner, C. R. Menyuk, W. L. Kath, and V. S. Grigoryan, IEEE Photon. Technol. Lett. 14, 1079 (2002).
    [CrossRef]
  5. J. Wang and J. M. Kahn, IEEE Photon. Technol. Lett. 16, 2165 (2004).
    [CrossRef]
  6. E. Vanin, G. Jacobsen, and A. Berntson, Opt. Lett. 31, 2272 (2006).
    [CrossRef] [PubMed]
  7. J. P. Gordon and L. F. Mollenauer, Opt. Lett. 15, 1351 (1990).
    [CrossRef] [PubMed]
  8. K.-P. Ho, J. Opt. Soc. Am. B 20, 1875 (2003).
    [CrossRef]

2006 (1)

2004 (1)

J. Wang and J. M. Kahn, IEEE Photon. Technol. Lett. 16, 2165 (2004).
[CrossRef]

2003 (1)

2002 (2)

R. Holzlöhner, V. S. Grigoryan, C. R. Menyuk, and W. L. Kath, J. Lightwave Technol. 20, 389 (2002).
[CrossRef]

R. Holzlöhner, C. R. Menyuk, W. L. Kath, and V. S. Grigoryan, IEEE Photon. Technol. Lett. 14, 1079 (2002).
[CrossRef]

1997 (1)

R. Hui, M. O'Sullivan, A. Robinson, and M. Taylor, J. Lightwave Technol. 15, 1071 (1997).
[CrossRef]

1990 (1)

Berntson, A.

Forestieri, E.

M. Secondini, E. Forestieri, and C. R. Menyuk, in Optical Fiber Communication Conference (Optical Society of America, 2006), paper OThD3.

Gordon, J. P.

Grigoryan, V. S.

R. Holzlöhner, V. S. Grigoryan, C. R. Menyuk, and W. L. Kath, J. Lightwave Technol. 20, 389 (2002).
[CrossRef]

R. Holzlöhner, C. R. Menyuk, W. L. Kath, and V. S. Grigoryan, IEEE Photon. Technol. Lett. 14, 1079 (2002).
[CrossRef]

Ho, K.-P.

Holzlöhner, R.

R. Holzlöhner, C. R. Menyuk, W. L. Kath, and V. S. Grigoryan, IEEE Photon. Technol. Lett. 14, 1079 (2002).
[CrossRef]

R. Holzlöhner, V. S. Grigoryan, C. R. Menyuk, and W. L. Kath, J. Lightwave Technol. 20, 389 (2002).
[CrossRef]

Hui, R.

R. Hui, M. O'Sullivan, A. Robinson, and M. Taylor, J. Lightwave Technol. 15, 1071 (1997).
[CrossRef]

Jacobsen, G.

Kahn, J. M.

J. Wang and J. M. Kahn, IEEE Photon. Technol. Lett. 16, 2165 (2004).
[CrossRef]

Kath, W. L.

R. Holzlöhner, V. S. Grigoryan, C. R. Menyuk, and W. L. Kath, J. Lightwave Technol. 20, 389 (2002).
[CrossRef]

R. Holzlöhner, C. R. Menyuk, W. L. Kath, and V. S. Grigoryan, IEEE Photon. Technol. Lett. 14, 1079 (2002).
[CrossRef]

Menyuk, C. R.

R. Holzlöhner, C. R. Menyuk, W. L. Kath, and V. S. Grigoryan, IEEE Photon. Technol. Lett. 14, 1079 (2002).
[CrossRef]

R. Holzlöhner, V. S. Grigoryan, C. R. Menyuk, and W. L. Kath, J. Lightwave Technol. 20, 389 (2002).
[CrossRef]

M. Secondini, E. Forestieri, and C. R. Menyuk, in Optical Fiber Communication Conference (Optical Society of America, 2006), paper OThD3.

Mollenauer, L. F.

O'Sullivan, M.

R. Hui, M. O'Sullivan, A. Robinson, and M. Taylor, J. Lightwave Technol. 15, 1071 (1997).
[CrossRef]

Robinson, A.

R. Hui, M. O'Sullivan, A. Robinson, and M. Taylor, J. Lightwave Technol. 15, 1071 (1997).
[CrossRef]

Secondini, M.

M. Secondini, E. Forestieri, and C. R. Menyuk, in Optical Fiber Communication Conference (Optical Society of America, 2006), paper OThD3.

Taylor, M.

R. Hui, M. O'Sullivan, A. Robinson, and M. Taylor, J. Lightwave Technol. 15, 1071 (1997).
[CrossRef]

Vanin, E.

Wang, J.

J. Wang and J. M. Kahn, IEEE Photon. Technol. Lett. 16, 2165 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R. Holzlöhner, C. R. Menyuk, W. L. Kath, and V. S. Grigoryan, IEEE Photon. Technol. Lett. 14, 1079 (2002).
[CrossRef]

J. Wang and J. M. Kahn, IEEE Photon. Technol. Lett. 16, 2165 (2004).
[CrossRef]

J. Lightwave Technol. (2)

R. Hui, M. O'Sullivan, A. Robinson, and M. Taylor, J. Lightwave Technol. 15, 1071 (1997).
[CrossRef]

R. Holzlöhner, V. S. Grigoryan, C. R. Menyuk, and W. L. Kath, J. Lightwave Technol. 20, 389 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (2)

Other (1)

M. Secondini, E. Forestieri, and C. R. Menyuk, in Optical Fiber Communication Conference (Optical Society of America, 2006), paper OThD3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Joint PDF of the optical field (slowly varying complex amplitude given in mW 1 2 ) evaluated in full Monte Carlo simulations (a) and (c) and by following the covariance matrix approach (b) and (d) at the output of a 40 Gb i t s 1200 k m long transmission link. The nonlinear phase noise is extracted from the complex amplitude in (c) and (d). The mean value of extracted nonlinear phase is 5.8 rad and corresponds to anticlockwise rotation in the complex plain. The dashed circle segment indicates the level of constant optical field amplitude.

Fig. 2
Fig. 2

Received signal PDF in the electrical domain evaluated using covariance matrix approach with (solid curve) and without nonlinear phase noise separation (dashed curve), respectively, and completely disregarding nonlinear signal–noise interaction (dashed–dotted curve). The circles represent the results of a full Monte Carlo simulation for the PDF. Inset: system BER evaluated accounting for (triangles) and disregarding (crosses) the signal–noise interaction versus received averaged optical signal power.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A z = i β 2 2 2 A τ 2 i γ A 2 A α A .
φ ( τ ) = 0 L γ A ( z , τ ) 2 d z
Φ V ( ξ ) = exp { i ξ B T ( H 1 2 i ξ R ) 1 B } det ( I 2 i ξ RH ) ,
V = B T HB = k = 1 M B ( τ k ) 2 h ( τ d τ k ) ,

Metrics