Abstract

We report on what we believe to be the first active mode locking of near-degenerate, doubly and singly resonant cw-pumped optical parametric oscillators (OPOs). We show experimentally that a steady-state regime of short pulses is reached in a few tens of microseconds under cw pumping. The oscillation buildup dynamics of both OPOs is also explored, evidencing an unusual transient behavior in the mode-locking process.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Reid, M. Ebrahimzadeh, and W. Sibbett, J. Opt. Soc. Am. B 12, 1157 (1995).
    [CrossRef]
  2. G. J. Hall, M. Ebrahimzadeh, A. Robertson, G. P. A. Malcolm, and A. I. Ferguson, J. Opt. Soc. Am. B 10, 2168 (1993).
    [CrossRef]
  3. G. M. Gale, M. Cavallari, and F. Hache, J. Opt. Soc. Am. B 15, 702 (1998).
    [CrossRef]
  4. E. O. Potma, W. P. de Boeij, M. S. Pshenichnikov, and D. A. Wiersma, Opt. Lett. 23, 1763 (1998).
    [CrossRef]
  5. M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, J. Appl. Phys. 45, 3996 (1974).
    [CrossRef]
  6. H. Haus, IEEE J. Quantum Electron. QE-11, 323 (1975).
    [CrossRef]
  7. E. C. Cheung and J. M. Liu, J. Opt. Soc. Am. B 7, 1385 (1990).
    [CrossRef]
  8. S. A. Diddams, L. Ma, J. Ye, and J. L. Hall, Opt. Lett. 24, 1747 (1999).
    [CrossRef]
  9. N. Forget, Ph.D. dissertation (Ecole Polytechnique, France, 2006), http://www.imprimerie.polytechnique.fr/Theses/Files/Forget.pdf.
  10. N. Forget, S. Bahbah, C. Drag, F. Bretenaker, M. Lefebvre, and E. Rosencher, Opt. Lett. 31, 972 (2006).
    [CrossRef] [PubMed]
  11. I. D. Lindsay, G. A. Turnbull, M. H. Dunn, and M. Ebrahimzadeh, Opt. Lett. 23, 1889 (1998).
    [CrossRef]
  12. D. E. Zelmon, D. L. Small, and D. Jundt, J. Opt. Soc. Am. B 14, 3319 (1997).
    [CrossRef]
  13. R. C. Eckardt, C. D. Nabors, W. J. Kozlovsky, and R. L. Byer, J. Opt. Soc. Am. B 8, 646 (1991).
    [CrossRef]
  14. R. Al-Tahtamouni, K. Bencheikh, R. Storz, K. Schneider, M. Lang, J. Mlynek, and S. Schiller, Appl. Phys. B 66, 733 (1998).
    [CrossRef]
  15. S. Guha, Appl. Phys. B 66, 663 (1998).
    [CrossRef]
  16. J. M. Melkonian, N. Forget, C. Drag, F. Bretenaker, and E. Rosencher, IEEE J. Quantum Electron. (to be published).

2006 (1)

1999 (1)

1998 (5)

1997 (1)

1995 (1)

1993 (1)

1991 (1)

1990 (1)

1975 (1)

H. Haus, IEEE J. Quantum Electron. QE-11, 323 (1975).
[CrossRef]

1974 (1)

M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, J. Appl. Phys. 45, 3996 (1974).
[CrossRef]

Al-Tahtamouni, R.

R. Al-Tahtamouni, K. Bencheikh, R. Storz, K. Schneider, M. Lang, J. Mlynek, and S. Schiller, Appl. Phys. B 66, 733 (1998).
[CrossRef]

Bahbah, S.

Becker, M. F.

M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, J. Appl. Phys. 45, 3996 (1974).
[CrossRef]

Bencheikh, K.

R. Al-Tahtamouni, K. Bencheikh, R. Storz, K. Schneider, M. Lang, J. Mlynek, and S. Schiller, Appl. Phys. B 66, 733 (1998).
[CrossRef]

Bretenaker, F.

N. Forget, S. Bahbah, C. Drag, F. Bretenaker, M. Lefebvre, and E. Rosencher, Opt. Lett. 31, 972 (2006).
[CrossRef] [PubMed]

J. M. Melkonian, N. Forget, C. Drag, F. Bretenaker, and E. Rosencher, IEEE J. Quantum Electron. (to be published).

Byer, R. L.

Cavallari, M.

Cheung, E. C.

de Boeij, W. P.

Diddams, S. A.

Drag, C.

N. Forget, S. Bahbah, C. Drag, F. Bretenaker, M. Lefebvre, and E. Rosencher, Opt. Lett. 31, 972 (2006).
[CrossRef] [PubMed]

J. M. Melkonian, N. Forget, C. Drag, F. Bretenaker, and E. Rosencher, IEEE J. Quantum Electron. (to be published).

Dunn, M. H.

Ebrahimzadeh, M.

Eckardt, R. C.

Ferguson, A. I.

Forget, N.

N. Forget, S. Bahbah, C. Drag, F. Bretenaker, M. Lefebvre, and E. Rosencher, Opt. Lett. 31, 972 (2006).
[CrossRef] [PubMed]

J. M. Melkonian, N. Forget, C. Drag, F. Bretenaker, and E. Rosencher, IEEE J. Quantum Electron. (to be published).

N. Forget, Ph.D. dissertation (Ecole Polytechnique, France, 2006), http://www.imprimerie.polytechnique.fr/Theses/Files/Forget.pdf.

Gale, G. M.

Guha, S.

S. Guha, Appl. Phys. B 66, 663 (1998).
[CrossRef]

Hache, F.

Hall, G. J.

Hall, J. L.

Haus, H.

H. Haus, IEEE J. Quantum Electron. QE-11, 323 (1975).
[CrossRef]

Jundt, D.

Kozlovsky, W. J.

Kuizenga, D. J.

M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, J. Appl. Phys. 45, 3996 (1974).
[CrossRef]

Lang, M.

R. Al-Tahtamouni, K. Bencheikh, R. Storz, K. Schneider, M. Lang, J. Mlynek, and S. Schiller, Appl. Phys. B 66, 733 (1998).
[CrossRef]

Lefebvre, M.

Lindsay, I. D.

Liu, J. M.

Ma, L.

Malcolm, G. P. A.

Melkonian, J. M.

J. M. Melkonian, N. Forget, C. Drag, F. Bretenaker, and E. Rosencher, IEEE J. Quantum Electron. (to be published).

Mlynek, J.

R. Al-Tahtamouni, K. Bencheikh, R. Storz, K. Schneider, M. Lang, J. Mlynek, and S. Schiller, Appl. Phys. B 66, 733 (1998).
[CrossRef]

Nabors, C. D.

Phillion, D. W.

M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, J. Appl. Phys. 45, 3996 (1974).
[CrossRef]

Potma, E. O.

Pshenichnikov, M. S.

Reid, D. T.

Robertson, A.

Rosencher, E.

N. Forget, S. Bahbah, C. Drag, F. Bretenaker, M. Lefebvre, and E. Rosencher, Opt. Lett. 31, 972 (2006).
[CrossRef] [PubMed]

J. M. Melkonian, N. Forget, C. Drag, F. Bretenaker, and E. Rosencher, IEEE J. Quantum Electron. (to be published).

Schiller, S.

R. Al-Tahtamouni, K. Bencheikh, R. Storz, K. Schneider, M. Lang, J. Mlynek, and S. Schiller, Appl. Phys. B 66, 733 (1998).
[CrossRef]

Schneider, K.

R. Al-Tahtamouni, K. Bencheikh, R. Storz, K. Schneider, M. Lang, J. Mlynek, and S. Schiller, Appl. Phys. B 66, 733 (1998).
[CrossRef]

Sibbett, W.

Siegman, A. E.

M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, J. Appl. Phys. 45, 3996 (1974).
[CrossRef]

Small, D. L.

Storz, R.

R. Al-Tahtamouni, K. Bencheikh, R. Storz, K. Schneider, M. Lang, J. Mlynek, and S. Schiller, Appl. Phys. B 66, 733 (1998).
[CrossRef]

Turnbull, G. A.

Wiersma, D. A.

Ye, J.

Zelmon, D. E.

Appl. Phys. B (2)

R. Al-Tahtamouni, K. Bencheikh, R. Storz, K. Schneider, M. Lang, J. Mlynek, and S. Schiller, Appl. Phys. B 66, 733 (1998).
[CrossRef]

S. Guha, Appl. Phys. B 66, 663 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Haus, IEEE J. Quantum Electron. QE-11, 323 (1975).
[CrossRef]

J. Appl. Phys. (1)

M. F. Becker, D. J. Kuizenga, D. W. Phillion, and A. E. Siegman, J. Appl. Phys. 45, 3996 (1974).
[CrossRef]

J. Opt. Soc. Am. B (6)

Opt. Lett. (4)

Other (2)

N. Forget, Ph.D. dissertation (Ecole Polytechnique, France, 2006), http://www.imprimerie.polytechnique.fr/Theses/Files/Forget.pdf.

J. M. Melkonian, N. Forget, C. Drag, F. Bretenaker, and E. Rosencher, IEEE J. Quantum Electron. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the DRO cavity. (b) Clusters of the DRO phase matched for degeneracy (stroked area) and gain curve (dashed curve) as given by ( sin Φ Φ ) 2 , where Φ is the phase mismatch among the signal, idler, and pump waves in the nonlinear crystal. The clusters are obtained by computing the overlap between the signal and idler frequency combs, for a cavity with 1% loss per optical element, and using [12] for dispersion data.

Fig. 2
Fig. 2

(a) Idler pulse train of the DRO, 820 μ s after the onset of the chopped pump pulse. At this time, the pulses have reached their steady-state duration. Inset, input pump on the microsecond scale (dark gray) and output idler without (light gray) and with modulation (black). The DRO is pumped at 4 × threshold and the modulation depth is 0.35. (b) Idler pulse duration of the DRO versus time for a chopped pump pulse and different modulation depths, 8 × above threshold. The origin of time is set when the first pulses can be distinguished from the background noise.

Fig. 3
Fig. 3

(a) Signal pulse train of the SRO for cw pumping. Inset, signal pulse train on the millisecond scale. The SRO is pumped at 1.4 × threshold and the modulation depth is 0.4. (b) Signal pulse duration of the SRO versus time at 1.4 × threshold, for a chopped pump pulse and different modulation depths.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ t T g 4 1 π m r 2 g 2 { [ 1 2 m ( 1 1 r 2 ) ] 2 1 } 1 2 ,

Metrics