Abstract

Squeezed light was generated at a telecommunication wavelength via single-pass optical parametric amplification in a periodically poled MgO-doped LiNbO3 waveguide. Classical parametric deamplification of 8.9dB was achieved. This large magnitude of deamplification indicates that the problem of gain-induced diffraction was avoided by employing the waveguide. Squeezing of 3.2dB was directly observed using a time-domain pulsed homodyne detector.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).
    [CrossRef]
  2. T. Hirano and M. Matsuoka, Opt. Lett. 15, 1153 (1990).
    [CrossRef] [PubMed]
  3. O. Aytür and P. Kumar, Opt. Lett. 17, 529 (1992).
    [CrossRef] [PubMed]
  4. C. Kim and P. Kumar, Phys. Rev. Lett. 73, 1605 (1994).
    [CrossRef] [PubMed]
  5. M. E. Anderson, M. Beck, M. G. Raymer, and J. D. Bierlein, Opt. Lett. 20, 620 (1995).
    [CrossRef] [PubMed]
  6. M. E. Anderson, D. F. McAlister, M. G. Raymer, and M. C. Gupta, J. Opt. Soc. Am. B 14, 3180 (1997).
    [CrossRef]
  7. C. X. Yu, H. A. Haus, and E. P. Ippen, Opt. Lett. 26, 669 (2001).
    [CrossRef]
  8. J. Wenger, R. Tualle-Brouri, and P. Grangier, Opt. Lett. 29, 1267 (2004).
    [CrossRef] [PubMed]
  9. Y. Eto, T. Tajima, Y. Zhang, and T. Hirano, Jpn. J. Appl. Phys., Part 2 45, L821 (2006).
    [CrossRef]
  10. H. Hansen, T. Aichele, C. Hettich, P. Lodahl, A. I. Lvovsky, J. Mlynek, and S. Schiller, Opt. Lett. 26, 1714 (2001).
    [CrossRef]
  11. D. Gottesman and J. Preskill, Phys. Rev. A 63, 022309 (2001).
    [CrossRef]
  12. J. Wenger, R. Tualle-Brouri, and P. Grangier, Phys. Rev. Lett. 92, 153601 (2004).
    [CrossRef] [PubMed]
  13. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, Science 312, 83 (2006).
    [CrossRef] [PubMed]
  14. A. La Porta and R. E. Slusher, Phys. Rev. A 44, 2013 (1991).
    [CrossRef] [PubMed]
  15. C. Kim, R.-D. Li, and P. Kumar, Opt. Lett. 19, 132 (1994).
    [CrossRef] [PubMed]
  16. R. Tang, P. Devgan, P. L. Voss, V. S. Grigoryan, and P. Kumar, IEEE Photon. Technol. Lett. 17, 1845 (2005).
    [CrossRef]

2006 (2)

Y. Eto, T. Tajima, Y. Zhang, and T. Hirano, Jpn. J. Appl. Phys., Part 2 45, L821 (2006).
[CrossRef]

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, Science 312, 83 (2006).
[CrossRef] [PubMed]

2005 (2)

R. Tang, P. Devgan, P. L. Voss, V. S. Grigoryan, and P. Kumar, IEEE Photon. Technol. Lett. 17, 1845 (2005).
[CrossRef]

S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).
[CrossRef]

2004 (2)

J. Wenger, R. Tualle-Brouri, and P. Grangier, Opt. Lett. 29, 1267 (2004).
[CrossRef] [PubMed]

J. Wenger, R. Tualle-Brouri, and P. Grangier, Phys. Rev. Lett. 92, 153601 (2004).
[CrossRef] [PubMed]

2001 (3)

1997 (1)

1995 (1)

1994 (2)

1992 (1)

1991 (1)

A. La Porta and R. E. Slusher, Phys. Rev. A 44, 2013 (1991).
[CrossRef] [PubMed]

1990 (1)

Aichele, T.

Anderson, M. E.

Aytür, O.

Beck, M.

Bierlein, J. D.

Braunstein, S. L.

S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).
[CrossRef]

Devgan, P.

R. Tang, P. Devgan, P. L. Voss, V. S. Grigoryan, and P. Kumar, IEEE Photon. Technol. Lett. 17, 1845 (2005).
[CrossRef]

Eto, Y.

Y. Eto, T. Tajima, Y. Zhang, and T. Hirano, Jpn. J. Appl. Phys., Part 2 45, L821 (2006).
[CrossRef]

Gottesman, D.

D. Gottesman and J. Preskill, Phys. Rev. A 63, 022309 (2001).
[CrossRef]

Grangier, P.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, Science 312, 83 (2006).
[CrossRef] [PubMed]

J. Wenger, R. Tualle-Brouri, and P. Grangier, Opt. Lett. 29, 1267 (2004).
[CrossRef] [PubMed]

J. Wenger, R. Tualle-Brouri, and P. Grangier, Phys. Rev. Lett. 92, 153601 (2004).
[CrossRef] [PubMed]

Grigoryan, V. S.

R. Tang, P. Devgan, P. L. Voss, V. S. Grigoryan, and P. Kumar, IEEE Photon. Technol. Lett. 17, 1845 (2005).
[CrossRef]

Gupta, M. C.

Hansen, H.

Haus, H. A.

Hettich, C.

Hirano, T.

Y. Eto, T. Tajima, Y. Zhang, and T. Hirano, Jpn. J. Appl. Phys., Part 2 45, L821 (2006).
[CrossRef]

T. Hirano and M. Matsuoka, Opt. Lett. 15, 1153 (1990).
[CrossRef] [PubMed]

Ippen, E. P.

Kim, C.

Kumar, P.

R. Tang, P. Devgan, P. L. Voss, V. S. Grigoryan, and P. Kumar, IEEE Photon. Technol. Lett. 17, 1845 (2005).
[CrossRef]

C. Kim, R.-D. Li, and P. Kumar, Opt. Lett. 19, 132 (1994).
[CrossRef] [PubMed]

C. Kim and P. Kumar, Phys. Rev. Lett. 73, 1605 (1994).
[CrossRef] [PubMed]

O. Aytür and P. Kumar, Opt. Lett. 17, 529 (1992).
[CrossRef] [PubMed]

La Porta, A.

A. La Porta and R. E. Slusher, Phys. Rev. A 44, 2013 (1991).
[CrossRef] [PubMed]

Laurat, J.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, Science 312, 83 (2006).
[CrossRef] [PubMed]

Li, R.-D.

Lodahl, P.

Lvovsky, A. I.

Matsuoka, M.

McAlister, D. F.

Mlynek, J.

Ourjoumtsev, A.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, Science 312, 83 (2006).
[CrossRef] [PubMed]

Preskill, J.

D. Gottesman and J. Preskill, Phys. Rev. A 63, 022309 (2001).
[CrossRef]

Raymer, M. G.

Schiller, S.

Slusher, R. E.

A. La Porta and R. E. Slusher, Phys. Rev. A 44, 2013 (1991).
[CrossRef] [PubMed]

Tajima, T.

Y. Eto, T. Tajima, Y. Zhang, and T. Hirano, Jpn. J. Appl. Phys., Part 2 45, L821 (2006).
[CrossRef]

Tang, R.

R. Tang, P. Devgan, P. L. Voss, V. S. Grigoryan, and P. Kumar, IEEE Photon. Technol. Lett. 17, 1845 (2005).
[CrossRef]

Tualle-Brouri, R.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, Science 312, 83 (2006).
[CrossRef] [PubMed]

J. Wenger, R. Tualle-Brouri, and P. Grangier, Phys. Rev. Lett. 92, 153601 (2004).
[CrossRef] [PubMed]

J. Wenger, R. Tualle-Brouri, and P. Grangier, Opt. Lett. 29, 1267 (2004).
[CrossRef] [PubMed]

van Loock, P.

S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).
[CrossRef]

Voss, P. L.

R. Tang, P. Devgan, P. L. Voss, V. S. Grigoryan, and P. Kumar, IEEE Photon. Technol. Lett. 17, 1845 (2005).
[CrossRef]

Wenger, J.

J. Wenger, R. Tualle-Brouri, and P. Grangier, Opt. Lett. 29, 1267 (2004).
[CrossRef] [PubMed]

J. Wenger, R. Tualle-Brouri, and P. Grangier, Phys. Rev. Lett. 92, 153601 (2004).
[CrossRef] [PubMed]

Yu, C. X.

Zhang, Y.

Y. Eto, T. Tajima, Y. Zhang, and T. Hirano, Jpn. J. Appl. Phys., Part 2 45, L821 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. Tang, P. Devgan, P. L. Voss, V. S. Grigoryan, and P. Kumar, IEEE Photon. Technol. Lett. 17, 1845 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys., Part 2 (1)

Y. Eto, T. Tajima, Y. Zhang, and T. Hirano, Jpn. J. Appl. Phys., Part 2 45, L821 (2006).
[CrossRef]

Opt. Lett. (7)

Phys. Rev. A (2)

A. La Porta and R. E. Slusher, Phys. Rev. A 44, 2013 (1991).
[CrossRef] [PubMed]

D. Gottesman and J. Preskill, Phys. Rev. A 63, 022309 (2001).
[CrossRef]

Phys. Rev. Lett. (2)

J. Wenger, R. Tualle-Brouri, and P. Grangier, Phys. Rev. Lett. 92, 153601 (2004).
[CrossRef] [PubMed]

C. Kim and P. Kumar, Phys. Rev. Lett. 73, 1605 (1994).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513 (2005).
[CrossRef]

Science (1)

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, Science 312, 83 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Outline of the experimental apparatus. The dotted (solid) line indicates a light beam of wavelength at 1.535 μ m ( 767 nm ) . The arrows and circles on the dotted line indicate the polarization of the light at 1.535 μ m . The light at 767 nm has horizontally polarized. DPBS1 (2) acts as a polarizing beam splitter only for 1.535 μ m and is configured to transmit only vertically polarized FW. The half-wave-plates (HWP1, 2) serve as the λ 2 plate for a wavelength of 1.535 μ m and as the λ plate for a 767 nm wavelength.

Fig. 2
Fig. 2

(a) Output probe power versus relative phase between pump light and probe light. (b) Measured quadrature amplitude distribution for squeezed quadrature, antisqueezed quadrature, and SNL.

Fig. 3
Fig. 3

Pump power dependence of quadrature noise variance corrected by fluorescence electron and classical parametric gain.

Fig. 4
Fig. 4

Measured squeezing level and squeezing level corrected by fluorescence electron number as a function of the LO electron number. The inset plots parametric fluorescence electron number per pulse versus pump average power.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S ± mea = ( n LO S ± corr + n p f ) n LO .

Metrics