Abstract

Harmonic signal generation and frequency upconversion at millimeter-wave bands are experimentally demonstrated by using selective sideband Brillouin amplification induced by stimulated Brillouin scattering in a single-mode fiber. The harmonic signals and frequency upconverted signals are simultaneously generated by the beating of optical sidebands, one of which is Brillouin amplified. By using this method, we successfully demonstrate generation of third-harmonic millimeter waves at 32.55GHz with fLO of 10.85GHz and upconversion of 10Mbps quadrature-shift keyed data at fIF of 1.55GHz into a 30GHz band with more than 17dB RF power gain.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Seeds, IEEE Trans. Microwave Theory Tech. 51, 877 (2002).
    [CrossRef]
  2. J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, and W.-Y. Choi, IEEE Trans. Microwave Theory Tech. 54, 959 (2006).
    [CrossRef]
  3. X. S.Yao, IEEE Photon. Technol. Lett. 10, 264 (1998).
    [CrossRef]
  4. X. S.Yao, IEEE Photon. Technol. Lett. 10, 138 (1998).
    [CrossRef]
  5. T. Schneider, M. Junker, and D. Hannover, Electron. Lett. 40, 1500 (2004).
    [CrossRef]
  6. T. Schneider, D. Hannover, and M. Junker, J. Lightwave Technol. 24, 295 (2006).
    [CrossRef]
  7. Y. Shen, X. Zhang, and K. Chen, IEEE Photon. Technol. Lett. 17, 1277 (2006).
    [CrossRef]
  8. B. Vidal, M. A. Piqueras, and J. Marti, Opt. Lett. 32, 23 (2007).
    [CrossRef]
  9. T. Tanenura, Y. Takushima, and K. Kikuchi, Opt. Lett. 27, 1552 (2002).
    [CrossRef]
  10. K. Song and K. Hotate, IEEE Photon. Technol. Lett. 18, 499 (2006).
    [CrossRef]
  11. A. Kobyakov, S. Darmanyan, M. Sauer, and D. Chowdhury, Opt. Lett. 31, 1960 (2006).
    [CrossRef] [PubMed]
  12. G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, IEEE Trans. Microwave Theory Tech. 41, 2383 (1993).
    [CrossRef]

2007 (1)

2006 (5)

J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, and W.-Y. Choi, IEEE Trans. Microwave Theory Tech. 54, 959 (2006).
[CrossRef]

Y. Shen, X. Zhang, and K. Chen, IEEE Photon. Technol. Lett. 17, 1277 (2006).
[CrossRef]

K. Song and K. Hotate, IEEE Photon. Technol. Lett. 18, 499 (2006).
[CrossRef]

T. Schneider, D. Hannover, and M. Junker, J. Lightwave Technol. 24, 295 (2006).
[CrossRef]

A. Kobyakov, S. Darmanyan, M. Sauer, and D. Chowdhury, Opt. Lett. 31, 1960 (2006).
[CrossRef] [PubMed]

2004 (1)

T. Schneider, M. Junker, and D. Hannover, Electron. Lett. 40, 1500 (2004).
[CrossRef]

2002 (2)

A. J. Seeds, IEEE Trans. Microwave Theory Tech. 51, 877 (2002).
[CrossRef]

T. Tanenura, Y. Takushima, and K. Kikuchi, Opt. Lett. 27, 1552 (2002).
[CrossRef]

1998 (2)

X. S.Yao, IEEE Photon. Technol. Lett. 10, 264 (1998).
[CrossRef]

X. S.Yao, IEEE Photon. Technol. Lett. 10, 138 (1998).
[CrossRef]

1993 (1)

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, IEEE Trans. Microwave Theory Tech. 41, 2383 (1993).
[CrossRef]

Bulmer, C. H.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, IEEE Trans. Microwave Theory Tech. 41, 2383 (1993).
[CrossRef]

Burns, W. K.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, IEEE Trans. Microwave Theory Tech. 41, 2383 (1993).
[CrossRef]

Chen, K.

Y. Shen, X. Zhang, and K. Chen, IEEE Photon. Technol. Lett. 17, 1277 (2006).
[CrossRef]

Choi, C.-S.

J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, and W.-Y. Choi, IEEE Trans. Microwave Theory Tech. 54, 959 (2006).
[CrossRef]

Choi, W.-Y.

J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, and W.-Y. Choi, IEEE Trans. Microwave Theory Tech. 54, 959 (2006).
[CrossRef]

Chowdhury, D.

Chung, Y.-D.

J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, and W.-Y. Choi, IEEE Trans. Microwave Theory Tech. 54, 959 (2006).
[CrossRef]

Darmanyan, S.

Gopalakrishnan, G. K.

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, IEEE Trans. Microwave Theory Tech. 41, 2383 (1993).
[CrossRef]

Hannover, D.

T. Schneider, D. Hannover, and M. Junker, J. Lightwave Technol. 24, 295 (2006).
[CrossRef]

T. Schneider, M. Junker, and D. Hannover, Electron. Lett. 40, 1500 (2004).
[CrossRef]

Hotate, K.

K. Song and K. Hotate, IEEE Photon. Technol. Lett. 18, 499 (2006).
[CrossRef]

Junker, M.

T. Schneider, D. Hannover, and M. Junker, J. Lightwave Technol. 24, 295 (2006).
[CrossRef]

T. Schneider, M. Junker, and D. Hannover, Electron. Lett. 40, 1500 (2004).
[CrossRef]

Kang, Y.-S.

J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, and W.-Y. Choi, IEEE Trans. Microwave Theory Tech. 54, 959 (2006).
[CrossRef]

Kikuchi, K.

Kim, J.

J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, and W.-Y. Choi, IEEE Trans. Microwave Theory Tech. 54, 959 (2006).
[CrossRef]

Kobyakov, A.

Marti, J.

Piqueras, M. A.

Sauer, M.

Schneider, T.

T. Schneider, D. Hannover, and M. Junker, J. Lightwave Technol. 24, 295 (2006).
[CrossRef]

T. Schneider, M. Junker, and D. Hannover, Electron. Lett. 40, 1500 (2004).
[CrossRef]

Seeds, A. J.

A. J. Seeds, IEEE Trans. Microwave Theory Tech. 51, 877 (2002).
[CrossRef]

Seo, J.-H.

J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, and W.-Y. Choi, IEEE Trans. Microwave Theory Tech. 54, 959 (2006).
[CrossRef]

Shen, Y.

Y. Shen, X. Zhang, and K. Chen, IEEE Photon. Technol. Lett. 17, 1277 (2006).
[CrossRef]

Song, K.

K. Song and K. Hotate, IEEE Photon. Technol. Lett. 18, 499 (2006).
[CrossRef]

Takushima, Y.

Tanenura, T.

Vidal, B.

Yao, X. S.

X. S.Yao, IEEE Photon. Technol. Lett. 10, 138 (1998).
[CrossRef]

X. S.Yao, IEEE Photon. Technol. Lett. 10, 264 (1998).
[CrossRef]

Zhang, X.

Y. Shen, X. Zhang, and K. Chen, IEEE Photon. Technol. Lett. 17, 1277 (2006).
[CrossRef]

Electron. Lett. (1)

T. Schneider, M. Junker, and D. Hannover, Electron. Lett. 40, 1500 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Y. Shen, X. Zhang, and K. Chen, IEEE Photon. Technol. Lett. 17, 1277 (2006).
[CrossRef]

K. Song and K. Hotate, IEEE Photon. Technol. Lett. 18, 499 (2006).
[CrossRef]

X. S.Yao, IEEE Photon. Technol. Lett. 10, 264 (1998).
[CrossRef]

X. S.Yao, IEEE Photon. Technol. Lett. 10, 138 (1998).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (3)

A. J. Seeds, IEEE Trans. Microwave Theory Tech. 51, 877 (2002).
[CrossRef]

J.-H. Seo, C.-S. Choi, Y.-S. Kang, Y.-D. Chung, J. Kim, and W.-Y. Choi, IEEE Trans. Microwave Theory Tech. 54, 959 (2006).
[CrossRef]

G. K. Gopalakrishnan, W. K. Burns, and C. H. Bulmer, IEEE Trans. Microwave Theory Tech. 41, 2383 (1993).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for demonstration of harmonic signal generation and harmonic frequency upconversion based on SSBA. Abbreviations are defined in text.

Fig. 2
Fig. 2

Measured optical and RF spectra (a), (c) without SSBA and (b), (d) with SSBA induced by 8 dBm optical pumping in a 10 km long SMF.

Fig. 3
Fig. 3

Measured RF power gain according to the optical pump power.

Fig. 4
Fig. 4

Measured RF spectra of (a) upconverted and (b) downconverted LSB signals of 10 Mbps QPSK data with SSBA induced by an 8 dBm optical pump in a 10 km long SMF.

Fig. 5
Fig. 5

Measured eye diagrams for a demodulated 10 Mbps QPSK signal (a) without and (b) with SSBA induced by an 8 dBm optical pump in a 10 km long SMF.

Metrics