Abstract

We apply two- and three-dimensional numerical calculations to study optical nanoantennae made of two coupled gold nanostructures, enclosing a single emitter in their gap. We show that, using structures manufacturable with today’s nanotechnology, it is possible to increase the radiative decay rate by three orders of magnitude while keeping a quantum efficiency larger than 80% in the near-infrared regime. We examine the competition between the radiative and nonradiative processes in the presence of the antennae as a function of wavelength and antenna geometry. Our results hold great promise for improving the quantum efficiency of poor emitters such as silicon nanocrystals or carbon nanotubes.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription