Abstract

A guided-mode resonance (GMR) filter with wide angular tolerances is experimentally demonstrated as an authentication label illuminated with unpolarized white light. The proposed filter, based on a free-standing silicon nitride membrane suspended on a silicon substrate, is fabricated by using anisotropic wet etching to remove the substrate beneath the silicon nitride layer. Both grating and waveguide structures without a lower cladding layer, i.e., a substrate, are fabricated simultaneously on a silicon nitride membrane. Since the silicon nitride is transparent within the spectra of visible and infrared light, such suspended-membrane-type GMR filters are well suited for applications within the visible spectrum. Moreover, the high refractive index of silicon nitride allows the proposed filters to have strongly modulated gratings and an immunity to high angular deviation. The measured reflection resonance has an angular tolerance up to ±5° under normal incidence for the wavelength of 629.5nm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. S. Liu, S. Tibuleac, P. P. Young, and R. Magnusson, Opt. Lett. 23, 1556 (1998).
    [CrossRef]
  2. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, Opt. Lett. 23, 700 (1998).
    [CrossRef]
  3. S. Tibuleac and R. Magnusson, Opt. Lett. 26, 584 (2001).
    [CrossRef]
  4. S. S. Wang and R. Magnusson, Appl. Opt. 32, 2606 (1993).
    [CrossRef] [PubMed]
  5. G. Niederer, H. P. Herzig, J. Shamir, H. Thiele, M. Schnieper, and C. Zschokke, Appl. Opt. 43, 1683 (2004).
    [CrossRef] [PubMed]
  6. A. Sentenac and A.-L. Fehrembach, J. Opt. Soc. Am. A 22, 475 (2005).
    [CrossRef]
  7. S. T. Thurman and G. M. Morris, Appl. Opt. 42, 3225 (2003).
    [CrossRef] [PubMed]
  8. D. Lacour, G. Graney, and J.-P. Plumey, J. Opt. Soc. Am. A 20, 1546 (2003).
    [CrossRef]
  9. M. T. Gale, K. Knop, and R. H. Morf, Proc. SPIE 1210, 83-89 (1990).
  10. C.-L. Hsu, Y.-C. Liu, C.-M. Wang, M.-L. Wu, Y.-L. Tsai, Y.-H. Chou, C.-C. Lee, and J.-Y. Chang, J. Lightwave Technol. 24, 1922 (2006).
    [CrossRef]

2006

2005

2004

2003

2001

1998

1993

1990

M. T. Gale, K. Knop, and R. H. Morf, Proc. SPIE 1210, 83-89 (1990).

Brundrett, D. L.

Chang, J.-Y.

Chou, Y.-H.

Fehrembach, A.-L.

Gale, M. T.

M. T. Gale, K. Knop, and R. H. Morf, Proc. SPIE 1210, 83-89 (1990).

Gaylord, T. K.

Glytsis, E. N.

Graney, G.

Herzig, H. P.

Hsu, C.-L.

Knop, K.

M. T. Gale, K. Knop, and R. H. Morf, Proc. SPIE 1210, 83-89 (1990).

Lacour, D.

Lee, C.-C.

Liu, Y.-C.

Liu, Z. S.

Magnusson, R.

Morf, R. H.

M. T. Gale, K. Knop, and R. H. Morf, Proc. SPIE 1210, 83-89 (1990).

Morris, G. M.

Niederer, G.

Plumey, J.-P.

Schnieper, M.

Sentenac, A.

Shamir, J.

Thiele, H.

Thurman, S. T.

Tibuleac, S.

Tsai, Y.-L.

Wang, C.-M.

Wang, S. S.

Wu, M.-L.

Young, P. P.

Zschokke, C.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic view of the single-layer GMR filter with a surface-relief subwavelength grating on a planar waveguide.

Fig. 2
Fig. 2

Calculated reflection spectrum of the proposed GMR structure within the visible wavelength under normal incidence of unpolarized light.

Fig. 3
Fig. 3

Calculated reflected efficiency of the proposed GMR structure at resonance wavelength of 629.5 nm under oblique incidence of unpolarized light.

Fig. 4
Fig. 4

Dispersion relation of the proposed GMR structure corresponding to the reflected spectrum for wavelength λ and incident angle θ.

Fig. 5
Fig. 5

Electron microscope photograph of the fabricated authentication label and its grating structures.

Fig. 6
Fig. 6

Photographs of the fabricated authentication label (a) under near-normal incidence and (b) under an oblique incidence near 38°.

Metrics