Abstract

We demonstrate liquid-crystal-based integrated optical devices with >140GHz electrical tuning for potential applications in dynamic optical networks. Bragg wavelength tuning covering five 25GHz wavelength-division multiplexing channel spacing has been achieved with 170V (peak-to-peak) sinusoidal voltages applied across electropatterned indium tin oxide–covered glass electrodes placed 60μm apart. This tunability range was limited only by the initial grating strength and supply voltage level. We also observed two distinct threshold behaviors that manifest during increase of supply voltage, resulting in a hysteresis in the tuning curve for both TE and TM input light.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Neilson, C. R. Doerr, D. M. Marom, R. Ryf, and M. P. Earnshaw, Bell Syst. Tech. J. 11, 105 (2006).
    [CrossRef]
  2. I. J. G. Sparrow, G. D. Emmerson, P. G. R. Smith, M. Kaczmarek, and A. Dyadyusha, in European Conference on Integrated Optics (European Optical Society, 2005), paper ThP01.
  3. L. Sirleto, G. Coppola, G. Breglio, G. Abbate, G. C. Righini, and J. M. Oton, Opt. Eng. (Bellingham) 41, 2890 (2002).
    [CrossRef]
  4. R. Asquini, A. Fratalocchi, A. D'Alessandro, and G. Assanto, Appl. Opt. 44, 4136 (2005).
    [CrossRef] [PubMed]
  5. G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, Electron. Lett. 38, 1531 (2002).
    [CrossRef]
  6. R.-P. Pan, S.-R. Liou, and C.-K. Lin, Jpn. J. Appl. Phys. 34, 6410 (1995).
    [CrossRef]

2006 (1)

D. T. Neilson, C. R. Doerr, D. M. Marom, R. Ryf, and M. P. Earnshaw, Bell Syst. Tech. J. 11, 105 (2006).
[CrossRef]

2005 (1)

2002 (2)

L. Sirleto, G. Coppola, G. Breglio, G. Abbate, G. C. Righini, and J. M. Oton, Opt. Eng. (Bellingham) 41, 2890 (2002).
[CrossRef]

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, Electron. Lett. 38, 1531 (2002).
[CrossRef]

1995 (1)

R.-P. Pan, S.-R. Liou, and C.-K. Lin, Jpn. J. Appl. Phys. 34, 6410 (1995).
[CrossRef]

Abbate, G.

L. Sirleto, G. Coppola, G. Breglio, G. Abbate, G. C. Righini, and J. M. Oton, Opt. Eng. (Bellingham) 41, 2890 (2002).
[CrossRef]

Albanis, V.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, Electron. Lett. 38, 1531 (2002).
[CrossRef]

Asquini, R.

Assanto, G.

Breglio, G.

L. Sirleto, G. Coppola, G. Breglio, G. Abbate, G. C. Righini, and J. M. Oton, Opt. Eng. (Bellingham) 41, 2890 (2002).
[CrossRef]

Coppola, G.

L. Sirleto, G. Coppola, G. Breglio, G. Abbate, G. C. Righini, and J. M. Oton, Opt. Eng. (Bellingham) 41, 2890 (2002).
[CrossRef]

D'Alessandro, A.

Doerr, C. R.

D. T. Neilson, C. R. Doerr, D. M. Marom, R. Ryf, and M. P. Earnshaw, Bell Syst. Tech. J. 11, 105 (2006).
[CrossRef]

Dyadyusha, A.

I. J. G. Sparrow, G. D. Emmerson, P. G. R. Smith, M. Kaczmarek, and A. Dyadyusha, in European Conference on Integrated Optics (European Optical Society, 2005), paper ThP01.

Earnshaw, M. P.

D. T. Neilson, C. R. Doerr, D. M. Marom, R. Ryf, and M. P. Earnshaw, Bell Syst. Tech. J. 11, 105 (2006).
[CrossRef]

Emmerson, G. D.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, Electron. Lett. 38, 1531 (2002).
[CrossRef]

I. J. G. Sparrow, G. D. Emmerson, P. G. R. Smith, M. Kaczmarek, and A. Dyadyusha, in European Conference on Integrated Optics (European Optical Society, 2005), paper ThP01.

Fratalocchi, A.

Gawith, C. B. E.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, Electron. Lett. 38, 1531 (2002).
[CrossRef]

Ibsen, M.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, Electron. Lett. 38, 1531 (2002).
[CrossRef]

Kaczmarek, M.

I. J. G. Sparrow, G. D. Emmerson, P. G. R. Smith, M. Kaczmarek, and A. Dyadyusha, in European Conference on Integrated Optics (European Optical Society, 2005), paper ThP01.

Lin, C.-K.

R.-P. Pan, S.-R. Liou, and C.-K. Lin, Jpn. J. Appl. Phys. 34, 6410 (1995).
[CrossRef]

Liou, S.-R.

R.-P. Pan, S.-R. Liou, and C.-K. Lin, Jpn. J. Appl. Phys. 34, 6410 (1995).
[CrossRef]

Marom, D. M.

D. T. Neilson, C. R. Doerr, D. M. Marom, R. Ryf, and M. P. Earnshaw, Bell Syst. Tech. J. 11, 105 (2006).
[CrossRef]

Neilson, D. T.

D. T. Neilson, C. R. Doerr, D. M. Marom, R. Ryf, and M. P. Earnshaw, Bell Syst. Tech. J. 11, 105 (2006).
[CrossRef]

Oton, J. M.

L. Sirleto, G. Coppola, G. Breglio, G. Abbate, G. C. Righini, and J. M. Oton, Opt. Eng. (Bellingham) 41, 2890 (2002).
[CrossRef]

Pan, R.-P.

R.-P. Pan, S.-R. Liou, and C.-K. Lin, Jpn. J. Appl. Phys. 34, 6410 (1995).
[CrossRef]

Righini, G. C.

L. Sirleto, G. Coppola, G. Breglio, G. Abbate, G. C. Righini, and J. M. Oton, Opt. Eng. (Bellingham) 41, 2890 (2002).
[CrossRef]

Ryf, R.

D. T. Neilson, C. R. Doerr, D. M. Marom, R. Ryf, and M. P. Earnshaw, Bell Syst. Tech. J. 11, 105 (2006).
[CrossRef]

Sirleto, L.

L. Sirleto, G. Coppola, G. Breglio, G. Abbate, G. C. Righini, and J. M. Oton, Opt. Eng. (Bellingham) 41, 2890 (2002).
[CrossRef]

Smith, P. G. R.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, Electron. Lett. 38, 1531 (2002).
[CrossRef]

I. J. G. Sparrow, G. D. Emmerson, P. G. R. Smith, M. Kaczmarek, and A. Dyadyusha, in European Conference on Integrated Optics (European Optical Society, 2005), paper ThP01.

Sparrow, I. J. G.

I. J. G. Sparrow, G. D. Emmerson, P. G. R. Smith, M. Kaczmarek, and A. Dyadyusha, in European Conference on Integrated Optics (European Optical Society, 2005), paper ThP01.

Watts, S. P.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, Electron. Lett. 38, 1531 (2002).
[CrossRef]

Williams, R. B.

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, Electron. Lett. 38, 1531 (2002).
[CrossRef]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

D. T. Neilson, C. R. Doerr, D. M. Marom, R. Ryf, and M. P. Earnshaw, Bell Syst. Tech. J. 11, 105 (2006).
[CrossRef]

Electron. Lett. (1)

G. D. Emmerson, S. P. Watts, C. B. E. Gawith, V. Albanis, M. Ibsen, R. B. Williams, and P. G. R. Smith, Electron. Lett. 38, 1531 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (1)

R.-P. Pan, S.-R. Liou, and C.-K. Lin, Jpn. J. Appl. Phys. 34, 6410 (1995).
[CrossRef]

Opt. Eng. (Bellingham) (1)

L. Sirleto, G. Coppola, G. Breglio, G. Abbate, G. C. Righini, and J. M. Oton, Opt. Eng. (Bellingham) 41, 2890 (2002).
[CrossRef]

Other (1)

I. J. G. Sparrow, G. D. Emmerson, P. G. R. Smith, M. Kaczmarek, and A. Dyadyusha, in European Conference on Integrated Optics (European Optical Society, 2005), paper ThP01.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic representation of the assembled device showing the liquid-crystal overlay between the electropatterned ITO electrodes and the waveguide containing Bragg gratings. The overclad, core, and underclad thicknesses are 20 , 5, and 20 μ m , respectively, with a waveguide width of 5 μ m .

Fig. 2
Fig. 2

Absolute device tuning curves for both TM and TE polarized light showing hysteresis between points A and B. The insets show the same curves for increasing (arrow pointing upwards) and decreasing (arrow pointing downwards) voltages. In inset (i), the circles numbered 1 and 2 shows the two threshold points at 22 and 57 V , respectively.

Fig. 3
Fig. 3

Grating reflection spectra at the two threshold points. The primary threshold for this case is between 22 23 V pp , whereas the secondary threshold point is 46 48 V pp at 1 kHz . These spectra were recorded at a range of values of the AC 1 kHz voltage, increasing from 0   to   170 V pp and vice versa for the decreasing voltage data. No noticeable difference in terms of grating reflection spectral shape and strength is observed at these transitions. Lev–Mar theoretical profiles are also shown on two of the graphs.

Metrics