Abstract

We propose and simulate two novel schemes of 40Gbits format conversion from non-return-to-zero to return-to-zero based on cascaded second-harmonic generation and difference-frequency generation in a periodically poled lithium niobate loop mirror. We investigate the conversion performance, including eye diagrams, conversion efficiency, pulse width, Q-factor, extinction ratio, and tunability. The proposed schemes can perform single-to-dual-channel format conversion. In addition, it is found that simultaneous multichannel format conversion as well as tunable multicasting format conversion can potentially be implemented with great flexibility.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Chow, C. S. Wong, and H. K. Tsang, Opt. Commun. 209, 329 (2002).
    [CrossRef]
  2. L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, IEEE Photon. Technol. Lett. 15, 308 (2003).
    [CrossRef]
  3. J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, Opt. Commun. 269, 179 (2007).
    [CrossRef]
  4. J. Wang, J. Sun, and Q. Sun, Opt. Lett. 31, 1711 (2006).
    [CrossRef] [PubMed]
  5. J. Wang, J. Sun, Q. Sun, D. Wang, and D. Huang, Opt. Express 15, 583 (2007).
    [CrossRef] [PubMed]

2007 (2)

J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, Opt. Commun. 269, 179 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, and D. Huang, Opt. Express 15, 583 (2007).
[CrossRef] [PubMed]

2006 (1)

2003 (1)

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, IEEE Photon. Technol. Lett. 15, 308 (2003).
[CrossRef]

2002 (1)

C. W. Chow, C. S. Wong, and H. K. Tsang, Opt. Commun. 209, 329 (2002).
[CrossRef]

Baby, V.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, IEEE Photon. Technol. Lett. 15, 308 (2003).
[CrossRef]

Chow, C. W.

C. W. Chow, C. S. Wong, and H. K. Tsang, Opt. Commun. 209, 329 (2002).
[CrossRef]

Glesk, I.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, IEEE Photon. Technol. Lett. 15, 308 (2003).
[CrossRef]

Huang, D.

J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, Opt. Commun. 269, 179 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, and D. Huang, Opt. Express 15, 583 (2007).
[CrossRef] [PubMed]

Prucnal, P. R.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, IEEE Photon. Technol. Lett. 15, 308 (2003).
[CrossRef]

Sun, J.

Sun, Q.

Tsang, H. K.

C. W. Chow, C. S. Wong, and H. K. Tsang, Opt. Commun. 209, 329 (2002).
[CrossRef]

Wang, B. C.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, IEEE Photon. Technol. Lett. 15, 308 (2003).
[CrossRef]

Wang, D.

Wang, J.

Wong, C. S.

C. W. Chow, C. S. Wong, and H. K. Tsang, Opt. Commun. 209, 329 (2002).
[CrossRef]

Xu, L.

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, IEEE Photon. Technol. Lett. 15, 308 (2003).
[CrossRef]

Yuan, X.

J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, Opt. Commun. 269, 179 (2007).
[CrossRef]

Zhang, X.

J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, Opt. Commun. 269, 179 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

L. Xu, B. C. Wang, V. Baby, I. Glesk, and P. R. Prucnal, IEEE Photon. Technol. Lett. 15, 308 (2003).
[CrossRef]

Opt. Commun. (2)

J. Wang, J. Sun, X. Zhang, X. Yuan, and D. Huang, Opt. Commun. 269, 179 (2007).
[CrossRef]

C. W. Chow, C. S. Wong, and H. K. Tsang, Opt. Commun. 209, 329 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of PPLN-LM-based all-optical NRZ-to-RZ format conversion. WDM FC, wavelength-division-multiplexed fiber coupler.

Fig. 2
Fig. 2

Waveforms for different optical waves: (a) input NRZ signal; (b) input pump pulse train; (c), (g) output CW signals from PPLN; (d), (h) output CCW signals from PPLN; (e), (i) output RZ signals at port ② of PPLN-LM; (f), (j) output RZ idlers at port ② of PPLN-LM. The pump and signal wavelengths are 1544.0 and 1555.0 nm for (c)–(f) and the opposite for (g)–(j).

Fig. 3
Fig. 3

Eye diagrams for different optical waves: (a) input NRZ signal; (b) input pump pulse train; (c), (e) output RZ signals; (d), (f) output RZ idlers. The pump and signal wavelengths are 1544.0 and 1555.0 nm for (c) and (d) and the opposite for (e) and (f).

Fig. 4
Fig. 4

Optical spectra for different optical waves: (a) input NRZ signal; (b) input pump pulse train; (c), (e) output RZ signals; (d), (f) output RZ idlers. The pump and signal wavelengths are 1544.0 and 1555.0 nm for (c) and (d) and the opposite for (e) and (f).

Fig. 5
Fig. 5

Tunable performance for NRZ-to-RZ format conversion: (a) scheme 1 with the pump wavelength fixed at 1544.0 nm , (b) scheme 2 with the signal wavelength kept at 1544.0 nm .

Fig. 6
Fig. 6

Effect of the imbalance of the 3 dB FC on the conversion performance: (a) Scheme 1 with the pump wavelength fixed at 1544.0 nm , (b) scheme 2 with the signal wavelength kept at 1544.0 nm .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A P z + β 1 P A P t + i 2 β 2 P 2 A P t 2 + 1 2 α P A P = i ω P κ S H G A P * A S H exp ( i Δ k S H G z ) ,
A S H z + β 1 S H A S H t + i 2 β 2 S H 2 A S H t 2 + 1 2 α S H A S H = i 2 ω S H κ S H G A P A P exp ( i Δ k S H G z ) + i ω S H κ D F G A S A i exp ( i Δ k D F G z ) ,
A S z + β 1 S A S t + i 2 β 2 S 2 A S t 2 + 1 2 α S A S = i ω S κ D F G A i * A S H exp ( i Δ k D F G z ) ,
A i z + β 1 i A i t + i 2 β 2 i 2 A i t 2 + 1 2 α i A i = i ω i κ D F G A S * A S H exp ( i Δ k D F G z ) ,

Metrics