Abstract

An environmentally stable mode-locked fiber laser based on nonlinear polarization rotation is experimentally demonstrated. The laser is based on a novel laser configuration that has negligible low-power steady-state reflectivity from one side and, consequently, no CW gain. The laser is self starting and the configuration is implementable as an all-fiber laser with standard polarization-maintaining fiber-pigtailed components. A pulse duration of 5.6ps is obtained at a repetition rate of 5.96MHz and at an average power of 8mW. As an application of the proposed laser configuration, 213mW of supercontinuum (6001750nm) was demonstrated from a fiber laser system with no sections of free-space optics.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, Opt. Express 13, 9346 (2005).
    [CrossRef] [PubMed]
  2. I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2005), paper CThG1.
  3. H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
    [CrossRef]
  4. M. Martinelli, Opt. Commun. 72, 341 (1989).
    [CrossRef]
  5. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 1995).
  6. C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, J. Opt. A 2, 314 (2000).
    [CrossRef]
  7. S. V. Chernikov, Y. Zhu, J. R. Taylor, and V. P. Gapontsev, Opt. Lett. 22, 298 (1997).
    [CrossRef] [PubMed]
  8. A. A. Fotiadi, R. V. Kiyan, and O. V. Shakin, Tech. Phys. Lett. 27, 434 (2001).
    [CrossRef]
  9. M. E. Fermann, L.-M. Yang, M. L. Stock, and M. J. Andrejco, Opt. Lett. 19, 43 (1994).
    [CrossRef] [PubMed]
  10. H. Lim, A. Chong, and F. W. Wise, Opt. Express 13, 3460 (2005).
    [CrossRef] [PubMed]
  11. Crystal Fibre A/S, www.crystal-fibre.com.

2005

2001

A. A. Fotiadi, R. V. Kiyan, and O. V. Shakin, Tech. Phys. Lett. 27, 434 (2001).
[CrossRef]

2000

C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, J. Opt. A 2, 314 (2000).
[CrossRef]

1997

1994

M. E. Fermann, L.-M. Yang, M. L. Stock, and M. J. Andrejco, Opt. Lett. 19, 43 (1994).
[CrossRef] [PubMed]

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

1989

M. Martinelli, Opt. Commun. 72, 341 (1989).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 1995).

Andrejco, M. J.

Chernikov, S. V.

Cho, G. C.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2005), paper CThG1.

Chong, A.

Dong, L.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2005), paper CThG1.

Fermann, M. E.

M. E. Fermann, L.-M. Yang, M. L. Stock, and M. J. Andrejco, Opt. Lett. 19, 43 (1994).
[CrossRef] [PubMed]

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2005), paper CThG1.

Fotiadi, A. A.

A. A. Fotiadi, R. V. Kiyan, and O. V. Shakin, Tech. Phys. Lett. 27, 434 (2001).
[CrossRef]

Gapontsev, V. P.

Gisin, N.

C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, J. Opt. A 2, 314 (2000).
[CrossRef]

Hartl, I.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2005), paper CThG1.

Haus, H. A.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

Hohmuth, R.

Huttner, B.

C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, J. Opt. A 2, 314 (2000).
[CrossRef]

Imeshev, G.

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2005), paper CThG1.

Ippen, E. P.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

Kiyan, R. V.

A. A. Fotiadi, R. V. Kiyan, and O. V. Shakin, Tech. Phys. Lett. 27, 434 (2001).
[CrossRef]

Lim, H.

Limpert, J.

Martinelli, M.

M. Martinelli, Opt. Commun. 72, 341 (1989).
[CrossRef]

Nielsen, C. K.

Ortaç, B.

Richter, W.

Schreiber, T.

Shakin, O. V.

A. A. Fotiadi, R. V. Kiyan, and O. V. Shakin, Tech. Phys. Lett. 27, 434 (2001).
[CrossRef]

Stock, M. L.

Tamura, K.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

Taylor, J. R.

Tünnermann, A.

Vinegoni, C.

C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, J. Opt. A 2, 314 (2000).
[CrossRef]

Wegmuller, M.

C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, J. Opt. A 2, 314 (2000).
[CrossRef]

Wise, F. W.

Yang, L.-M.

Zhu, Y.

IEEE J. Quantum Electron.

H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quantum Electron. 30, 200 (1994).
[CrossRef]

J. Opt. A

C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, J. Opt. A 2, 314 (2000).
[CrossRef]

Opt. Commun.

M. Martinelli, Opt. Commun. 72, 341 (1989).
[CrossRef]

Opt. Express

Opt. Lett.

Tech. Phys. Lett.

A. A. Fotiadi, R. V. Kiyan, and O. V. Shakin, Tech. Phys. Lett. 27, 434 (2001).
[CrossRef]

Other

Crystal Fibre A/S, www.crystal-fibre.com.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 1995).

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, in Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2005), paper CThG1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

All-PM laser configuration. FM, Faraday mirror; FBG, fiber Bragg grating; angled splice, 30 ° degree between birefringent axes.

Fig. 2
Fig. 2

Calculated reflection through a polarizer after NPR in a PM fiber and reflection off a FM. Reflection is calculated for different angles between the polarizer and the birefringent axis of the fiber on the input side.

Fig. 3
Fig. 3

Autocorrelation trace of the output 1 pulse. The autocorrelation FWHM of the nonoscillating part was 7.0 ps . Inset, output spectrum from the all-PM laser at a pump power of 300 mW . Solid curve, output 1; dotted line, output 2.

Fig. 4
Fig. 4

Long-term output power stability. Insert, rf spectrum of the mode-locked output around the fundamental frequency at a pump power of 300 mW . The resolution bandwidth was 1 kHz .

Fig. 5
Fig. 5

Supercontinuum generated from setup with no sections of free-space optics.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

z A x ( t ) = + i γ ( A x ( t ) 2 + 2 3 A y ( t ) 2 ) A x ( t ) + i 3 A x ( t ) * A y ( t ) 2 exp ( 2 i Δ β z ) ,
z A y ( t ) = + i γ ( A y ( t ) 2 + 2 3 A x ( t ) 2 ) A y ( t ) + i 3 A y ( t ) * A x ( t ) 2 exp ( 2 i Δ β z ) .

Metrics