Abstract

In terms of the spectral density tensors associated with the electric field vector, the maximum visibility one can obtain in a two-point interference arrangement by using local (i.e., position-dependent) unitary transformations applied at such points is determined. It is also shown that the maximum visibility can be expressed in terms of a number of well-known parameters describing the coherence and polarization features of the field.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf, Phys. Lett. A 312, 263 (2003).
    [CrossRef]
  2. J. Tervo, T. Setälä, and A. T. Friberg, Opt. Express 11, 1137 (2003).
    [CrossRef] [PubMed]
  3. S. A. Ponomarenko and E. Wolf, Opt. Commun. 227, 73 (2003).
    [CrossRef]
  4. M. Mujat and A. Dogariu, Opt. Lett. 28, 2153 (2003).
    [CrossRef] [PubMed]
  5. T. Setälä, J. Tervo, and A. T. Friberg, Opt. Lett. 29, 328 (2004).
    [CrossRef] [PubMed]
  6. M. Mujat, A. Dogariu, and E. Wolf, J. Opt. Soc. Am. A 21, 2414 (2004).
    [CrossRef]
  7. J. Tervo, T. Setälä, and A. T. Friberg, J. Opt. Soc. Am. A 21, 2205 (2004).
    [CrossRef]
  8. Ph. Réfrégier and F. Goudail, Opt. Express 13, 6051 (2005).
    [CrossRef] [PubMed]
  9. F. Gori, M. Santarsiero, R. Borghi, and E. Wolf, Opt. Lett. 31, 688 (2006).
    [CrossRef] [PubMed]
  10. F. Gori, M. Santarsiero, and R. Borghi, Opt. Lett. 31, 858 (2006).
    [CrossRef] [PubMed]
  11. Ph. Réfrégier and A. Roueff, Opt. Lett. 31, 1175 (2006).
    [CrossRef] [PubMed]
  12. Ph. Réfrégier and A. Roueff, Opt. Lett. 31, 2827 (2006).
    [CrossRef] [PubMed]
  13. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  14. C. Brosseau, Fundamentals of Polarized Light (Wiley, 1998).
  15. P. M. Mejías, R. Martínez-Herrero, G. Piquero, and J. M. Movilla, Prog. Quantum Electron. 26, 65 (2002).
    [CrossRef]
  16. F. Gori, M. Santarsiero, and R. Borghi, Opt. Lett. 32, 588 (2007).
    [CrossRef] [PubMed]

2007

2006

2005

2004

2003

2002

P. M. Mejías, R. Martínez-Herrero, G. Piquero, and J. M. Movilla, Prog. Quantum Electron. 26, 65 (2002).
[CrossRef]

Borghi, R.

Brosseau, C.

C. Brosseau, Fundamentals of Polarized Light (Wiley, 1998).

Dogariu, A.

Friberg, A. T.

Gori, F.

Goudail, F.

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

Martínez-Herrero, R.

P. M. Mejías, R. Martínez-Herrero, G. Piquero, and J. M. Movilla, Prog. Quantum Electron. 26, 65 (2002).
[CrossRef]

Mejías, P. M.

P. M. Mejías, R. Martínez-Herrero, G. Piquero, and J. M. Movilla, Prog. Quantum Electron. 26, 65 (2002).
[CrossRef]

Movilla, J. M.

P. M. Mejías, R. Martínez-Herrero, G. Piquero, and J. M. Movilla, Prog. Quantum Electron. 26, 65 (2002).
[CrossRef]

Mujat, M.

Piquero, G.

P. M. Mejías, R. Martínez-Herrero, G. Piquero, and J. M. Movilla, Prog. Quantum Electron. 26, 65 (2002).
[CrossRef]

Ponomarenko, S. A.

S. A. Ponomarenko and E. Wolf, Opt. Commun. 227, 73 (2003).
[CrossRef]

Réfrégier, Ph.

Roueff, A.

Santarsiero, M.

Setälä, T.

Tervo, J.

Wolf, E.

F. Gori, M. Santarsiero, R. Borghi, and E. Wolf, Opt. Lett. 31, 688 (2006).
[CrossRef] [PubMed]

M. Mujat, A. Dogariu, and E. Wolf, J. Opt. Soc. Am. A 21, 2414 (2004).
[CrossRef]

S. A. Ponomarenko and E. Wolf, Opt. Commun. 227, 73 (2003).
[CrossRef]

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (32)

Equations on this page are rendered with MathJax. Learn more.

W i j = W ( r i , r j , ω ) = E + ( r i , ω ) E ( r j , ω ) , i , j = 1 , 2 ,
μ W 2 = t r W 12 2 t r W 11 t r W 22 ,
u S T F 2 = t r ( W 12 W 21 ) t r W 11 t r W 22 ,
( μ W 2 ) max = σ 1 2 + σ 2 2 + 2 σ 1 σ 2 t r W 11 t r W 22 ,
t r ( W 12 W 12 + ) = σ 1 2 + σ 2 2 ,
det ( W 12 W 12 + ) = σ 1 2 σ 2 2 ,
μ S T F 2 = σ 1 2 + σ 2 2 t r W 11 t r W 22 ,
( μ W 2 ) max = μ S T F 2 + 4 det W 12 W 12 + t r W 11 t r W 22 .
M ( r 1 , r 2 ) = W 11 1 2 W 12 W 22 1 2 .
det M = μ I μ S .
det W 12 = μ I μ S det W 11 det W 22 = 1 4 μ I μ S ( 1 P 1 2 ) ( 1 P 2 2 ) ( t r W 11 ) 2 ( t r W 22 ) 2 ,
4 det W 12 W 12 + t r W 11 t r W 22 = 1 2 μ 1 μ S ( 1 P 1 2 ) ( 1 P 2 2 ) ,
( μ W 2 ) max = μ S T F 2 + 1 2 μ I μ S ( 1 P 1 2 ) ( 1 P 2 2 ) .
W 12 = ( 1 1 1 0 ) , W 22 = ( 2 1 1 1 ) .
W 11 = I , W 12 = ( 1 2 1 1 1 2 ) , and W 22 = ( 3 2 2 2 3 2 ) .
W 12 = U + D V ,
D = ( σ 1 0 0 σ 2 ) .
U 1 = U + H 1 ,
U 2 = V + H 2 ,
W 11 = H 1 + U W 11 U + H 1 ,
W 22 = H 2 + V W 11 V + H 2 ,
W 12 = H 1 + D H 2 ,
μ W 2 = t r ( H 1 + D H 2 ) 2 t r W 11 t r W 22 ,
t r ( H 1 + D H 2 ) = t r ( H 2 H 1 + D D ) ,
( σ 1 0 0 σ 2 ) .
t r ( H 2 H 1 + D D ) 2 t r ( H 2 H 1 + D D H 1 H 2 + ) t r D ,
H 2 H 1 + D = λ D ,
( H 2 H 1 + λ I ) D = 0 ,
H 2 H 1 + = λ I .
H 1 + = λ H 2 + ,
H 2 = λ H 1 ,
( μ W 2 ) max = t r ( H 1 + D H 2 ) 2 t r W 11 t r W 22 = t r D 2 t r W 11 t r W 22 = σ 1 2 + σ 2 2 + 2 σ 1 σ 2 t r W 11 t r W 22 ,

Metrics