Abstract

Fields of a radially polarized laser beam developed recently [ Y. I. Salamin, Opt. Lett. 31, 2619 (2006) ] are employed to show that electrons produced by atomic ionization near the focus may be accelerated to GeV energies. Conditions for producing a mono-energetic and well-collimated electron beam are discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. X. Hu and A. F. Starace, Phys. Rev. Lett. 88, 245003 (2002).
    [CrossRef] [PubMed]
  2. A. Maltsev and T. Ditmire, Phys. Rev. Lett. 90, 053002 (2003).
    [CrossRef] [PubMed]
  3. E. Esarey, P. Sprangle, and J. Krall, Phys. Rev. E 52, 5443 (1995).
    [CrossRef]
  4. P. Serafim, P. Sprangle, and B. Hafizi, IEEE Trans. Plasma Sci. 28, 1155 (2000).
    [CrossRef]
  5. Y. I. Salamin, Phys. Rev. A 73, 043402 (2006).
    [CrossRef]
  6. Y. I. Salamin, Opt. Lett. 31, 2619 (2006).
    [CrossRef] [PubMed]
  7. Y. I. Salamin, New J. Phys. 8, 133 (2006).
    [CrossRef]
  8. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B: Photophys. Laser Chem. 72, 109 (2001).
  9. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  10. I. Bialynicki-Birula, Phys. Rev. Lett. 93, 020402 (2004).
    [CrossRef] [PubMed]
  11. S. X. Hu and A. F. Starace, Phys. Rev. E 73, 066502 (2006).
    [CrossRef]
  12. V. S. Rastunkov and V. P. Krainov, Phys. Plasmas 13, 023104 (2006).
    [CrossRef]

2006 (5)

Y. I. Salamin, Phys. Rev. A 73, 043402 (2006).
[CrossRef]

Y. I. Salamin, Opt. Lett. 31, 2619 (2006).
[CrossRef] [PubMed]

Y. I. Salamin, New J. Phys. 8, 133 (2006).
[CrossRef]

S. X. Hu and A. F. Starace, Phys. Rev. E 73, 066502 (2006).
[CrossRef]

V. S. Rastunkov and V. P. Krainov, Phys. Plasmas 13, 023104 (2006).
[CrossRef]

2004 (1)

I. Bialynicki-Birula, Phys. Rev. Lett. 93, 020402 (2004).
[CrossRef] [PubMed]

2003 (2)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

A. Maltsev and T. Ditmire, Phys. Rev. Lett. 90, 053002 (2003).
[CrossRef] [PubMed]

2002 (1)

S. X. Hu and A. F. Starace, Phys. Rev. Lett. 88, 245003 (2002).
[CrossRef] [PubMed]

2001 (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B: Photophys. Laser Chem. 72, 109 (2001).

2000 (1)

P. Serafim, P. Sprangle, and B. Hafizi, IEEE Trans. Plasma Sci. 28, 1155 (2000).
[CrossRef]

1995 (1)

E. Esarey, P. Sprangle, and J. Krall, Phys. Rev. E 52, 5443 (1995).
[CrossRef]

Bialynicki-Birula, I.

I. Bialynicki-Birula, Phys. Rev. Lett. 93, 020402 (2004).
[CrossRef] [PubMed]

Ditmire, T.

A. Maltsev and T. Ditmire, Phys. Rev. Lett. 90, 053002 (2003).
[CrossRef] [PubMed]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B: Photophys. Laser Chem. 72, 109 (2001).

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B: Photophys. Laser Chem. 72, 109 (2001).

Esarey, E.

E. Esarey, P. Sprangle, and J. Krall, Phys. Rev. E 52, 5443 (1995).
[CrossRef]

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B: Photophys. Laser Chem. 72, 109 (2001).

Hafizi, B.

P. Serafim, P. Sprangle, and B. Hafizi, IEEE Trans. Plasma Sci. 28, 1155 (2000).
[CrossRef]

Hu, S. X.

S. X. Hu and A. F. Starace, Phys. Rev. E 73, 066502 (2006).
[CrossRef]

S. X. Hu and A. F. Starace, Phys. Rev. Lett. 88, 245003 (2002).
[CrossRef] [PubMed]

Krainov, V. P.

V. S. Rastunkov and V. P. Krainov, Phys. Plasmas 13, 023104 (2006).
[CrossRef]

Krall, J.

E. Esarey, P. Sprangle, and J. Krall, Phys. Rev. E 52, 5443 (1995).
[CrossRef]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B: Photophys. Laser Chem. 72, 109 (2001).

Maltsev, A.

A. Maltsev and T. Ditmire, Phys. Rev. Lett. 90, 053002 (2003).
[CrossRef] [PubMed]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B: Photophys. Laser Chem. 72, 109 (2001).

Rastunkov, V. S.

V. S. Rastunkov and V. P. Krainov, Phys. Plasmas 13, 023104 (2006).
[CrossRef]

Salamin, Y. I.

Y. I. Salamin, Phys. Rev. A 73, 043402 (2006).
[CrossRef]

Y. I. Salamin, Opt. Lett. 31, 2619 (2006).
[CrossRef] [PubMed]

Y. I. Salamin, New J. Phys. 8, 133 (2006).
[CrossRef]

Serafim, P.

P. Serafim, P. Sprangle, and B. Hafizi, IEEE Trans. Plasma Sci. 28, 1155 (2000).
[CrossRef]

Sprangle, P.

P. Serafim, P. Sprangle, and B. Hafizi, IEEE Trans. Plasma Sci. 28, 1155 (2000).
[CrossRef]

E. Esarey, P. Sprangle, and J. Krall, Phys. Rev. E 52, 5443 (1995).
[CrossRef]

Starace, A. F.

S. X. Hu and A. F. Starace, Phys. Rev. E 73, 066502 (2006).
[CrossRef]

S. X. Hu and A. F. Starace, Phys. Rev. Lett. 88, 245003 (2002).
[CrossRef] [PubMed]

Appl. Phys. B: Photophys. Laser Chem. (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Appl. Phys. B: Photophys. Laser Chem. 72, 109 (2001).

IEEE Trans. Plasma Sci. (1)

P. Serafim, P. Sprangle, and B. Hafizi, IEEE Trans. Plasma Sci. 28, 1155 (2000).
[CrossRef]

New J. Phys. (1)

Y. I. Salamin, New J. Phys. 8, 133 (2006).
[CrossRef]

Opt. Lett. (1)

Phys. Plasmas (1)

V. S. Rastunkov and V. P. Krainov, Phys. Plasmas 13, 023104 (2006).
[CrossRef]

Phys. Rev. A (1)

Y. I. Salamin, Phys. Rev. A 73, 043402 (2006).
[CrossRef]

Phys. Rev. E (2)

E. Esarey, P. Sprangle, and J. Krall, Phys. Rev. E 52, 5443 (1995).
[CrossRef]

S. X. Hu and A. F. Starace, Phys. Rev. E 73, 066502 (2006).
[CrossRef]

Phys. Rev. Lett. (4)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

I. Bialynicki-Birula, Phys. Rev. Lett. 93, 020402 (2004).
[CrossRef] [PubMed]

S. X. Hu and A. F. Starace, Phys. Rev. Lett. 88, 245003 (2002).
[CrossRef] [PubMed]

A. Maltsev and T. Ditmire, Phys. Rev. Lett. 90, 053002 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Electron energy gain as a function of the initial position (initial distance, in the transverse plane through the focus, from the beam axis). The remaining initial conditions are y 0 = z 0 = 0 and β 0 = 0 . Integration has been carried out from η 0 = 0 to η f = 4 π . Furthermore, ψ 0 = π , λ = 1 μ m , and w 0 = 5 λ 3 π 0.53 μ m , which corresponds to ϵ = 0.6 . Thus, according to Eq. (8), the powers of 1 and 10 PW correspond to E 0 2.66 × 10 15 and 8.41 × 10 15 V m , respectively.

Fig. 2
Fig. 2

Variation of the amplitudes of the scaled electric field components in the transverse plane through the beam focus (the x y plane) with the distance from the beam axis.

Fig. 3
Fig. 3

Electron diffraction angle φ as a function of the lateral initial position x 0 w 0 . The remaining initial conditions and parameter values are the same as in Fig. 1.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E r = E { ϵ [ ρ C 2 ] + ϵ 3 [ ρ C 3 2 + ρ 3 C 4 ρ 5 C 5 4 ] + ϵ 5 [ 3 ρ C 4 8 3 ρ 3 C 5 8 + 17 C 5 C 6 16 3 ρ 7 C 7 8 + ρ 9 C 8 32 ] } ,
E z = E { ϵ 2 [ S 2 ρ 2 S 3 ] + ϵ 4 [ S 3 2 + ρ 2 S 4 2 5 ρ 4 S 5 4 + ρ 6 S 6 4 ] } ,
B θ = E c { ϵ [ ρ C 2 ] + ϵ 3 [ ρ C 3 2 + ρ 3 C 4 2 ρ 5 C 5 4 ] + ϵ 5 [ 3 ρ C 4 8 + 3 ρ 3 C 5 8 + 3 ρ 5 C 6 16 ρ 7 C 7 4 + ρ 9 C 8 32 ] } .
E = E 0 e r 2 w 2 , w = w 0 1 + ζ 2 , ζ = z z r ,
C n = ( w 0 w ) n cos ( ψ + n ψ G ) , n = 2 , 3 , ,
S n = ( w 0 w ) n sin ( ψ + n ψ G ) , ψ G = tan 1 z z r ,
ψ = ψ 0 + ω t k z k r 2 2 R , R = z + z r 2 z ,
P = π w 0 2 2 E 0 2 c μ 0 ( ϵ 2 ) 2 [ 1 + 3 ( ϵ 2 ) 2 + 9 ( ϵ 2 ) 4 ] .
d p d t = e [ E + c β × B ] , d E d t = e c β E ,
d β d t = e γ m c [ β ( β E ) ( E + c β × B ) ] .
d ( γ β r ) d t = e m c [ E r c β z B θ ] ,
d ( γ β z ) d t = e m c [ E z + c β r B θ ] ,
d ( γ β θ ) d t = 0 ,
d γ d t = e m c [ β r E r + β z E z ] .

Metrics