Abstract

We present a photonic crystal fiber (PCF)-based light source for generating tunable excitation pulses (pump and Stokes) that are applicable to coherent anti-Stokes Raman scattering (CARS) microspectroscopy. The laser employed is an unamplified Ti:sapphire femtosecond laser oscillator. The CARS pump pulse is generated by spectral compression of a laser pulse in a PCF. The Stokes pulse is generated by redshifting a laser pulse in a PCF through the soliton self-frequency shift. This setup allows for probing up to 4000cm1 with a spectral resolution of approximately 25cm1. We characterize the stability and robustness of CARS microspectroscopy employing this light source.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Cheng and X.S. Xie, J. Phys. Chem. B 108, 827 (2004).
    [CrossRef]
  2. M. Müller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
    [CrossRef]
  3. J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, Proc. Natl. Acad. Sci. U.S.A. 106, 8493 (2002).
  4. E. O. Potma, W. P. de Boij, P. J. M. van Haastert, and D. A. Wiersma, Proc. Natl. Acad. Sci. U.S.A. 98, 1577 (2001).
    [CrossRef] [PubMed]
  5. J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Opt. Soc. Am. B 105, 1277 (2001).
  6. K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, Appl. Phys. Lett. 387, 436 (2004).
  7. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
    [CrossRef]
  8. N. Dudovich, D. Oron, and Y. Silberberg, Phys. Med. Biol. 418, 512 (2002).
  9. T. W. Kee and M. T. Cicerone, Opt. Lett. 29, 2701 (2004).
    [CrossRef] [PubMed]
  10. H. N. Paulsen, K. M. Hilligsoe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, Opt. Lett. 28, 1123 (2003).
    [CrossRef] [PubMed]
  11. E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thøgersen, and S. R. Keiding, J. Opt. Soc. Am. B 22, 1934 (2005).
    [CrossRef]
  12. M. Oberthaler and R. A. Höpfel, Appl. Phys. Lett. 63, 1017 (1993).
    [CrossRef]
  13. E. R. Andresen, J. Thøgersen, and S. R. Keiding, Opt. Lett. 30, 2025 (2005).
    [CrossRef] [PubMed]
  14. F. M. Mitschke and L. F. Mollenauer, Opt. Lett. 11, 659 (1986).
    [CrossRef] [PubMed]
  15. J. P. Gordon, Opt. Lett. 11, 662 (1986).
    [CrossRef] [PubMed]
  16. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  17. G. McConnell and E. Riis, Phys. Med. Biol. 49, 4757 (2004).
    [CrossRef] [PubMed]
  18. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  19. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, 1995).

2005

2004

G. McConnell and E. Riis, Phys. Med. Biol. 49, 4757 (2004).
[CrossRef] [PubMed]

J. Cheng and X.S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, Appl. Phys. Lett. 387, 436 (2004).

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

T. W. Kee and M. T. Cicerone, Opt. Lett. 29, 2701 (2004).
[CrossRef] [PubMed]

2003

2002

N. Dudovich, D. Oron, and Y. Silberberg, Phys. Med. Biol. 418, 512 (2002).

M. Müller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
[CrossRef]

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, Proc. Natl. Acad. Sci. U.S.A. 106, 8493 (2002).

2001

E. O. Potma, W. P. de Boij, P. J. M. van Haastert, and D. A. Wiersma, Proc. Natl. Acad. Sci. U.S.A. 98, 1577 (2001).
[CrossRef] [PubMed]

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Opt. Soc. Am. B 105, 1277 (2001).

2000

1995

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, 1995).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

1993

M. Oberthaler and R. A. Höpfel, Appl. Phys. Lett. 63, 1017 (1993).
[CrossRef]

1986

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

Andresen, E. R.

Birkedal, V.

Book, L. D.

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, Proc. Natl. Acad. Sci. U.S.A. 106, 8493 (2002).

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Opt. Soc. Am. B 105, 1277 (2001).

Cheng, J.

J. Cheng and X.S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, Proc. Natl. Acad. Sci. U.S.A. 106, 8493 (2002).

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Opt. Soc. Am. B 105, 1277 (2001).

Cicerone, M. T.

de Boij, W. P.

E. O. Potma, W. P. de Boij, P. J. M. van Haastert, and D. A. Wiersma, Proc. Natl. Acad. Sci. U.S.A. 98, 1577 (2001).
[CrossRef] [PubMed]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, Phys. Med. Biol. 418, 512 (2002).

Enejder, A. M. K.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Gordon, J. P.

Hellerer, T.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Hilligsoe, K. M.

Höpfel, R. A.

M. Oberthaler and R. A. Höpfel, Appl. Phys. Lett. 63, 1017 (1993).
[CrossRef]

Johnson, J. C.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, Appl. Phys. Lett. 387, 436 (2004).

Kee, T. W.

Keiding, S. R.

Knutsen, K. P.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, Appl. Phys. Lett. 387, 436 (2004).

Larsen, J. J.

McConnell, G.

G. McConnell and E. Riis, Phys. Med. Biol. 49, 4757 (2004).
[CrossRef] [PubMed]

Miller, A. E.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, Appl. Phys. Lett. 387, 436 (2004).

Mitschke, F. M.

Mollenauer, L. F.

Mukamel, S.

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, 1995).

Müller, M.

M. Müller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
[CrossRef]

Oberthaler, M.

M. Oberthaler and R. A. Höpfel, Appl. Phys. Lett. 63, 1017 (1993).
[CrossRef]

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, Phys. Med. Biol. 418, 512 (2002).

Paulsen, H. N.

Petersen, P. B.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, Appl. Phys. Lett. 387, 436 (2004).

Potma, E. O.

E. O. Potma, W. P. de Boij, P. J. M. van Haastert, and D. A. Wiersma, Proc. Natl. Acad. Sci. U.S.A. 98, 1577 (2001).
[CrossRef] [PubMed]

Ranka, J. K.

Riis, E.

G. McConnell and E. Riis, Phys. Med. Biol. 49, 4757 (2004).
[CrossRef] [PubMed]

Saykally, R. J.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, Appl. Phys. Lett. 387, 436 (2004).

Schins, J. M.

M. Müller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
[CrossRef]

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, Phys. Med. Biol. 418, 512 (2002).

Stentz, A. J.

Thøgersen, J.

van Haastert, P. J. M.

E. O. Potma, W. P. de Boij, P. J. M. van Haastert, and D. A. Wiersma, Proc. Natl. Acad. Sci. U.S.A. 98, 1577 (2001).
[CrossRef] [PubMed]

Volkmer, A.

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, Proc. Natl. Acad. Sci. U.S.A. 106, 8493 (2002).

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Opt. Soc. Am. B 105, 1277 (2001).

Wiersma, D. A.

E. O. Potma, W. P. de Boij, P. J. M. van Haastert, and D. A. Wiersma, Proc. Natl. Acad. Sci. U.S.A. 98, 1577 (2001).
[CrossRef] [PubMed]

Windeler, R. S.

Xie, X. S.

J. Cheng and X.S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, Proc. Natl. Acad. Sci. U.S.A. 106, 8493 (2002).

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Opt. Soc. Am. B 105, 1277 (2001).

Zumbusch, A.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

Appl. Phys. Lett.

K. P. Knutsen, J. C. Johnson, A. E. Miller, P. B. Petersen, and R. J. Saykally, Appl. Phys. Lett. 387, 436 (2004).

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, Appl. Phys. Lett. 85, 25 (2004).
[CrossRef]

M. Oberthaler and R. A. Höpfel, Appl. Phys. Lett. 63, 1017 (1993).
[CrossRef]

J. Opt. Soc. Am. B

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Opt. Soc. Am. B 105, 1277 (2001).

E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thøgersen, and S. R. Keiding, J. Opt. Soc. Am. B 22, 1934 (2005).
[CrossRef]

J. Phys. Chem. B

J. Cheng and X.S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

M. Müller and J. M. Schins, J. Phys. Chem. B 106, 3715 (2002).
[CrossRef]

Opt. Lett.

Phys. Med. Biol.

N. Dudovich, D. Oron, and Y. Silberberg, Phys. Med. Biol. 418, 512 (2002).

G. McConnell and E. Riis, Phys. Med. Biol. 49, 4757 (2004).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

J. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, Proc. Natl. Acad. Sci. U.S.A. 106, 8493 (2002).

E. O. Potma, W. P. de Boij, P. J. M. van Haastert, and D. A. Wiersma, Proc. Natl. Acad. Sci. U.S.A. 98, 1577 (2001).
[CrossRef] [PubMed]

Other

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford U. Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. L, laser; P, prism pair; PCF1, 50 cm long; PCF2, 190 cm long; DC, dichroic mirror; S, sample; M, monochromator; CCD, cooled CCD camera. For typical spectra at points (A), (B), and (C), see Fig. 2.

Fig. 2
Fig. 2

Spectra of excitation pulses. Spectrum of the laser [dashed-dotted, point (A) in Fig. 1]; spectrum of a spectrally compressed pulse [thin solid, (B) in Fig. 1]; spectra of six different Stokes pulses [thick solid, (C) in Fig. 1]; the gray line consists of a solitonic and a dispersive part. Inset, total fiber output power (right y axis) and percentage (left y axis) of fiber output power that is concentrated in the redshifted soliton versus its frequency shift. The dashed vertical line denotes the ZDW.

Fig. 3
Fig. 3

Stokes spectra (dotted), raw anti-Stokes spectra (thin solid), and normalized anti-Stokes spectra (thick solid) for three different Stokes center frequencies: (a) 9710 cm 1 , (b) 9615 cm 1 , (c) 9520 cm 1 .

Fig. 4
Fig. 4

Anti-Stokes spectrum of ethanol (thick solid); χ ( 3 ) 2 calculated from a fit to the Raman spectrum (thin solid). Inset, Raman spectrum. We note that we have shifted the anti-Stokes spectrum upward by 13 cm 1 because of a slight uncertainty in the absolute frequency calibration, which does not, however, affect the relative calibration.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I AS ( ν AS ) χ ( 3 ) ( ν AS ; ν P , ν S , ν P ) 2 I P 2 ( ν P ) I S ( ν S ) ,

Metrics