Abstract

The resonance patterns and lasing modes in a spiral-shaped dielectric microcavity are investigated through passive and active medium calculations. We find that the high-Q resonance modes are whispering-gallery-like modes, and these resonance modes can be easily excited as lasing modes. We also find that the quasi-scarred resonance mode, which shows strong directional emission beams from the cavity boundary, can be excited with selectively applied external pumping. Through a spectral analysis of the time evolution of the light field, the competition between these lasing modes is discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R.K.Chang and A.J.Campillo, eds., Optical Processes in Microcavities (World Scientific, 1996).
    [CrossRef]
  2. K.Vahala, ed., Optical Microcavities (World Scientific, 2004).
    [CrossRef]
  3. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
    [CrossRef]
  4. R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 63, 1310 (1993).
    [CrossRef]
  5. L. Collot, V. Lefevreseguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993).
    [CrossRef]
  6. T. Harayama, P. Davis, and K. S. Ikeda, Phys. Rev. Lett. 90, 063901 (2003).
    [CrossRef] [PubMed]
  7. T. Harayama, T. Fukushima, S. Sunada, and K. S. Ikeda, Phys. Rev. Lett. 91, 073903 (2003).
    [CrossRef] [PubMed]
  8. S.-Y. Lee, M. S. Kurdoglyan, S. Rim, and C.-M. Kim, Phys. Rev. A 70, 023809 (2004).
    [CrossRef]
  9. J. U. Nöckel and A. D. Stone, Nature 385, 45 (1997).
    [CrossRef]
  10. J. Wiersig, Phys. Rev. A 67, 023807 (2003).
    [CrossRef]
  11. M. S. Kurdoglyan, S.-Y. Lee, S. Rim, and C.-M. Kim, Opt. Lett. 29, 2758 (2004).
    [CrossRef] [PubMed]
  12. G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, Appl. Phys. Lett. 83, 1710 (2003).
    [CrossRef]
  13. F. Courvoisier, V. Boutou, J. P. Wolf, R. K. Chang, and J. Zyss, Opt. Lett. 30, 738 (2005).
    [CrossRef] [PubMed]
  14. S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and C.-M. Kim, Phys. Rev. Lett. 93, 164102 (2004).
    [CrossRef] [PubMed]
  15. J. Wiersig, J. Opt. A, Pure Appl. Opt. 5, 53 (2003).
    [CrossRef]
  16. The relation between the Q factor and the complex wavenumber nkR is given by Q=?Re[nkr0]/2Im[nkr0].
  17. H. G. Schuster, Deterministic Chaos (VCH, 1995).

2005 (1)

2004 (4)

M. S. Kurdoglyan, S.-Y. Lee, S. Rim, and C.-M. Kim, Opt. Lett. 29, 2758 (2004).
[CrossRef] [PubMed]

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and C.-M. Kim, Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

K.Vahala, ed., Optical Microcavities (World Scientific, 2004).
[CrossRef]

S.-Y. Lee, M. S. Kurdoglyan, S. Rim, and C.-M. Kim, Phys. Rev. A 70, 023809 (2004).
[CrossRef]

2003 (5)

T. Harayama, P. Davis, and K. S. Ikeda, Phys. Rev. Lett. 90, 063901 (2003).
[CrossRef] [PubMed]

T. Harayama, T. Fukushima, S. Sunada, and K. S. Ikeda, Phys. Rev. Lett. 91, 073903 (2003).
[CrossRef] [PubMed]

J. Wiersig, J. Opt. A, Pure Appl. Opt. 5, 53 (2003).
[CrossRef]

J. Wiersig, Phys. Rev. A 67, 023807 (2003).
[CrossRef]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, Appl. Phys. Lett. 83, 1710 (2003).
[CrossRef]

1997 (1)

J. U. Nöckel and A. D. Stone, Nature 385, 45 (1997).
[CrossRef]

1996 (1)

R.K.Chang and A.J.Campillo, eds., Optical Processes in Microcavities (World Scientific, 1996).
[CrossRef]

1995 (1)

H. G. Schuster, Deterministic Chaos (VCH, 1995).

1993 (2)

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 63, 1310 (1993).
[CrossRef]

L. Collot, V. Lefevreseguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993).
[CrossRef]

1992 (1)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

Boutou, V.

Brune, M.

L. Collot, V. Lefevreseguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993).
[CrossRef]

Chang, R. K.

F. Courvoisier, V. Boutou, J. P. Wolf, R. K. Chang, and J. Zyss, Opt. Lett. 30, 738 (2005).
[CrossRef] [PubMed]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, Appl. Phys. Lett. 83, 1710 (2003).
[CrossRef]

Chern, G. D.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, Appl. Phys. Lett. 83, 1710 (2003).
[CrossRef]

Choi, M.

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and C.-M. Kim, Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

Collot, L.

L. Collot, V. Lefevreseguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993).
[CrossRef]

Courvoisier, F.

Davis, P.

T. Harayama, P. Davis, and K. S. Ikeda, Phys. Rev. Lett. 90, 063901 (2003).
[CrossRef] [PubMed]

Fukushima, T.

T. Harayama, T. Fukushima, S. Sunada, and K. S. Ikeda, Phys. Rev. Lett. 91, 073903 (2003).
[CrossRef] [PubMed]

Harayama, T.

T. Harayama, T. Fukushima, S. Sunada, and K. S. Ikeda, Phys. Rev. Lett. 91, 073903 (2003).
[CrossRef] [PubMed]

T. Harayama, P. Davis, and K. S. Ikeda, Phys. Rev. Lett. 90, 063901 (2003).
[CrossRef] [PubMed]

Haroche, S.

L. Collot, V. Lefevreseguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993).
[CrossRef]

Ikeda, K. S.

T. Harayama, T. Fukushima, S. Sunada, and K. S. Ikeda, Phys. Rev. Lett. 91, 073903 (2003).
[CrossRef] [PubMed]

T. Harayama, P. Davis, and K. S. Ikeda, Phys. Rev. Lett. 90, 063901 (2003).
[CrossRef] [PubMed]

Johnson, N. M.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, Appl. Phys. Lett. 83, 1710 (2003).
[CrossRef]

Kim, C.-M.

S.-Y. Lee, M. S. Kurdoglyan, S. Rim, and C.-M. Kim, Phys. Rev. A 70, 023809 (2004).
[CrossRef]

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and C.-M. Kim, Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

M. S. Kurdoglyan, S.-Y. Lee, S. Rim, and C.-M. Kim, Opt. Lett. 29, 2758 (2004).
[CrossRef] [PubMed]

Kneissl, M.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, Appl. Phys. Lett. 83, 1710 (2003).
[CrossRef]

Kurdoglyan, M. S.

S.-Y. Lee, M. S. Kurdoglyan, S. Rim, and C.-M. Kim, Phys. Rev. A 70, 023809 (2004).
[CrossRef]

M. S. Kurdoglyan, S.-Y. Lee, S. Rim, and C.-M. Kim, Opt. Lett. 29, 2758 (2004).
[CrossRef] [PubMed]

Kwon, T.-Y.

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and C.-M. Kim, Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

Lee, S.-Y.

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and C.-M. Kim, Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

M. S. Kurdoglyan, S.-Y. Lee, S. Rim, and C.-M. Kim, Opt. Lett. 29, 2758 (2004).
[CrossRef] [PubMed]

S.-Y. Lee, M. S. Kurdoglyan, S. Rim, and C.-M. Kim, Phys. Rev. A 70, 023809 (2004).
[CrossRef]

Lefevreseguin, V.

L. Collot, V. Lefevreseguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993).
[CrossRef]

Levi, A. F. J.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 63, 1310 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

Logan, R. A.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 63, 1310 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

McCall, S. L.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 63, 1310 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

Mohideen, U.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 63, 1310 (1993).
[CrossRef]

Nöckel, J. U.

J. U. Nöckel and A. D. Stone, Nature 385, 45 (1997).
[CrossRef]

Pearton, S. J.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 63, 1310 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

Raimond, J. M.

L. Collot, V. Lefevreseguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993).
[CrossRef]

Rim, S.

M. S. Kurdoglyan, S.-Y. Lee, S. Rim, and C.-M. Kim, Opt. Lett. 29, 2758 (2004).
[CrossRef] [PubMed]

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and C.-M. Kim, Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

S.-Y. Lee, M. S. Kurdoglyan, S. Rim, and C.-M. Kim, Phys. Rev. A 70, 023809 (2004).
[CrossRef]

Ryu, J.-W.

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and C.-M. Kim, Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

Schuster, H. G.

H. G. Schuster, Deterministic Chaos (VCH, 1995).

Slusher, R. E.

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 63, 1310 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

Stone, A. D.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, Appl. Phys. Lett. 83, 1710 (2003).
[CrossRef]

J. U. Nöckel and A. D. Stone, Nature 385, 45 (1997).
[CrossRef]

Sunada, S.

T. Harayama, T. Fukushima, S. Sunada, and K. S. Ikeda, Phys. Rev. Lett. 91, 073903 (2003).
[CrossRef] [PubMed]

Tureci, H. E.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, Appl. Phys. Lett. 83, 1710 (2003).
[CrossRef]

Wiersig, J.

J. Wiersig, Phys. Rev. A 67, 023807 (2003).
[CrossRef]

J. Wiersig, J. Opt. A, Pure Appl. Opt. 5, 53 (2003).
[CrossRef]

Wolf, J. P.

Zyss, J.

Appl. Phys. Lett. (3)

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 60, 289 (1992).
[CrossRef]

R. E. Slusher, A. F. J. Levi, U. Mohideen, S. L. McCall, S. J. Pearton, and R. A. Logan, Appl. Phys. Lett. 63, 1310 (1993).
[CrossRef]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, Appl. Phys. Lett. 83, 1710 (2003).
[CrossRef]

Europhys. Lett. (1)

L. Collot, V. Lefevreseguin, M. Brune, J. M. Raimond, and S. Haroche, Europhys. Lett. 23, 327 (1993).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

J. Wiersig, J. Opt. A, Pure Appl. Opt. 5, 53 (2003).
[CrossRef]

Nature (1)

J. U. Nöckel and A. D. Stone, Nature 385, 45 (1997).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (2)

S.-Y. Lee, M. S. Kurdoglyan, S. Rim, and C.-M. Kim, Phys. Rev. A 70, 023809 (2004).
[CrossRef]

J. Wiersig, Phys. Rev. A 67, 023807 (2003).
[CrossRef]

Phys. Rev. Lett. (3)

S.-Y. Lee, S. Rim, J.-W. Ryu, T.-Y. Kwon, M. Choi, and C.-M. Kim, Phys. Rev. Lett. 93, 164102 (2004).
[CrossRef] [PubMed]

T. Harayama, P. Davis, and K. S. Ikeda, Phys. Rev. Lett. 90, 063901 (2003).
[CrossRef] [PubMed]

T. Harayama, T. Fukushima, S. Sunada, and K. S. Ikeda, Phys. Rev. Lett. 91, 073903 (2003).
[CrossRef] [PubMed]

Other (4)

R.K.Chang and A.J.Campillo, eds., Optical Processes in Microcavities (World Scientific, 1996).
[CrossRef]

K.Vahala, ed., Optical Microcavities (World Scientific, 2004).
[CrossRef]

The relation between the Q factor and the complex wavenumber nkR is given by Q=?Re[nkr0]/2Im[nkr0].

H. G. Schuster, Deterministic Chaos (VCH, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Resonance positions in the complex n k r 0 plane. The resonance patterns, denoted by (a) and (b), corresponding to WG-like and the QS modes, respectively, are shown in Fig. 2.

Fig. 2
Fig. 2

Field intensity plots of resonance modes calculated by BEM in the spiral-shaped microcavity. (a) WG-like resonance mode with n k r 0 = ( 60.611 , 0.0205 ) . (b) QS resonance mode with n k r 0 = ( 60.860 , 0.0938 ) . The field intensity is normalized by scaling the maximum intensity inside the cavity boundary as 1 in both figures.

Fig. 3
Fig. 3

(a) Snapshot of the time evolution of light-field intensity at the time marked by blue arrow in (b), simulated using the S–B model. The WG-like mode structure is dominant when the external pumping is distributed uniformly over the whole microcavity area. The inset of (a) indicates the uniform external pumping area. (b) Time evolution of the light-field intensity at a point outside the cavity. (c) Frequency spectrum obtained from the time evolution of the light field. In (a), the field intensity is normalized by scaling the maximum intensity inside the cavity boundary as 1.

Fig. 4
Fig. 4

(a) Snapshot of the time evolution of the light-field intensity at the time marked by blue arrow in (b), simulated using the S–B model. The QS mode can be excited as a lasing mode when the selective pumping is applied with some spatial geometry. The inset of (a) indicates the selected external pumping area. (b) Time evolution of the light-field intensity at a point outside the cavity. (c) Frequency spectrum obtained from the time evolution of the light field. In (a), the field intensity is normalized by scaling the maximum intensity inside the cavity boundary as 1.

Metrics