Abstract

The electrodynamic properties of a novel class of photonic-crystal metamaterial platform entirely synthesized by ultralow-refractive-index suspended nanostrips embedded in a dielectric matrix are described and investigated. The optical properties of the homogeneous metamaterial platform can be understood on the basis of equivalent distributed circuit extraction from an electromagnetic model that has negatively distributed superinductive properties. Low propagation loss, temperature-insensitive characteristics, and ultracompact size are the main advantages of the proposed technology, making this new type of metamaterial an excellent candidate for use in compact multilayer nanophotonic integrated systems.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith and N. Kroll, Phys. Rev. Lett. 85, 2933 (2000).
    [CrossRef] [PubMed]
  2. K. Aydin, K. Guven, L. Zhang, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, Opt. Lett. 29, 2623 (2004).
    [CrossRef] [PubMed]
  3. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Phys. Rev. Lett. 91, 207401 (2003).
    [CrossRef] [PubMed]
  4. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature 423, 604 (2003).
    [CrossRef] [PubMed]
  5. J. B. Pendry, L. Martin-Moreno, and F. G. Garcia-Vidal, Science 305, 847 (2004).
    [CrossRef] [PubMed]
  6. B. T. Schwartz and R. Piestun, J. Opt. Soc. Am. B 20, 2448 (2003).
    [CrossRef]
  7. N. J. Florous, K. Saitoh, and M. Koshiba, IEEE Photon. Technol. Lett. 17, 2313 (2005).
    [CrossRef]
  8. N. J. Florous, K. Saitoh, and M. Koshiba, Opt. Lett. 30, 2736 (2005).
    [CrossRef] [PubMed]
  9. L. G. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters: Impedance Matching Networks and Coupling Structures (McGraw-Hill, 1964).
  10. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1988).
  11. C. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).
  12. N. I. Muskhelishvilli, Singular Integral Equations: Boundary Problems of Functions Theory and Their Applications to Mathematical Physics (Noordhoff, 1953).
  13. M. Abramowitz and I. Stegun, eds., Handbook of Special Functions (Dover, 1970; Nauka, Moscow, 1979).
  14. N. J. Florous, K. Saitoh, and M. Koshiba, Opt. Lett. 31, 404 (2006).
    [CrossRef] [PubMed]

2006 (1)

2005 (2)

N. J. Florous, K. Saitoh, and M. Koshiba, Opt. Lett. 30, 2736 (2005).
[CrossRef] [PubMed]

N. J. Florous, K. Saitoh, and M. Koshiba, IEEE Photon. Technol. Lett. 17, 2313 (2005).
[CrossRef]

2004 (2)

2003 (3)

B. T. Schwartz and R. Piestun, J. Opt. Soc. Am. B 20, 2448 (2003).
[CrossRef]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature 423, 604 (2003).
[CrossRef] [PubMed]

2000 (1)

D. R. Smith and N. Kroll, Phys. Rev. Lett. 85, 2933 (2000).
[CrossRef] [PubMed]

1989 (1)

C. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).

1988 (1)

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1988).

1970 (1)

M. Abramowitz and I. Stegun, eds., Handbook of Special Functions (Dover, 1970; Nauka, Moscow, 1979).

1964 (1)

L. G. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters: Impedance Matching Networks and Coupling Structures (McGraw-Hill, 1964).

1953 (1)

N. I. Muskhelishvilli, Singular Integral Equations: Boundary Problems of Functions Theory and Their Applications to Mathematical Physics (Noordhoff, 1953).

Abramowitz, M.

M. Abramowitz and I. Stegun, eds., Handbook of Special Functions (Dover, 1970; Nauka, Moscow, 1979).

Aydin, K.

K. Aydin, K. Guven, L. Zhang, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, Opt. Lett. 29, 2623 (2004).
[CrossRef] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature 423, 604 (2003).
[CrossRef] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Balanis, C.

C. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).

Cubukcu, E.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature 423, 604 (2003).
[CrossRef] [PubMed]

Florous, N. J.

Foteinopoulou, S.

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature 423, 604 (2003).
[CrossRef] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Garcia-Vidal, F. G.

J. B. Pendry, L. Martin-Moreno, and F. G. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

Guven, K.

Jones, E. M. T.

L. G. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters: Impedance Matching Networks and Coupling Structures (McGraw-Hill, 1964).

Kafesaki, M.

Koshiba, M.

Kroll, N.

D. R. Smith and N. Kroll, Phys. Rev. Lett. 85, 2933 (2000).
[CrossRef] [PubMed]

Martin-Moreno, L.

J. B. Pendry, L. Martin-Moreno, and F. G. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

Matthaei, L. G.

L. G. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters: Impedance Matching Networks and Coupling Structures (McGraw-Hill, 1964).

Muskhelishvilli, N. I.

N. I. Muskhelishvilli, Singular Integral Equations: Boundary Problems of Functions Theory and Their Applications to Mathematical Physics (Noordhoff, 1953).

Ozbay, E.

K. Aydin, K. Guven, L. Zhang, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, Opt. Lett. 29, 2623 (2004).
[CrossRef] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature 423, 604 (2003).
[CrossRef] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1988).

Pendry, J. B.

J. B. Pendry, L. Martin-Moreno, and F. G. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

Piestun, R.

Saitoh, K.

Schwartz, B. T.

Smith, D. R.

D. R. Smith and N. Kroll, Phys. Rev. Lett. 85, 2933 (2000).
[CrossRef] [PubMed]

Soukoulis, C. M.

K. Aydin, K. Guven, L. Zhang, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, Opt. Lett. 29, 2623 (2004).
[CrossRef] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature 423, 604 (2003).
[CrossRef] [PubMed]

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

Stegun, I.

M. Abramowitz and I. Stegun, eds., Handbook of Special Functions (Dover, 1970; Nauka, Moscow, 1979).

Young, L.

L. G. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters: Impedance Matching Networks and Coupling Structures (McGraw-Hill, 1964).

Zhang, L.

IEEE Photon. Technol. Lett. (1)

N. J. Florous, K. Saitoh, and M. Koshiba, IEEE Photon. Technol. Lett. 17, 2313 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Nature 423, 604 (2003).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. Lett. (2)

E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, Phys. Rev. Lett. 91, 207401 (2003).
[CrossRef] [PubMed]

D. R. Smith and N. Kroll, Phys. Rev. Lett. 85, 2933 (2000).
[CrossRef] [PubMed]

Science (1)

J. B. Pendry, L. Martin-Moreno, and F. G. Garcia-Vidal, Science 305, 847 (2004).
[CrossRef] [PubMed]

Other (5)

L. G. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters: Impedance Matching Networks and Coupling Structures (McGraw-Hill, 1964).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1988).

C. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).

N. I. Muskhelishvilli, Singular Integral Equations: Boundary Problems of Functions Theory and Their Applications to Mathematical Physics (Noordhoff, 1953).

M. Abramowitz and I. Stegun, eds., Handbook of Special Functions (Dover, 1970; Nauka, Moscow, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Topology of a planar PC metamaterial platform composed of metallic nanostrips embedded in a dielectric matrix.

Fig. 2
Fig. 2

Bottom, equivalent inductance of the resulting homogeneous metamaterial, showing negative inductive behavior across the metamaterial uniformity, and top, equivalent resistance across the metamaterial cross section, showing ultralow-loss behavior. Note the periodicity of the metamaterial behavior caused by the periodic arrangement of the nanostrips across the y direction.

Fig. 3
Fig. 3

Light-wave guidance through (a) a 90 ° bend at λ = 664 nm (red light) with a calculated transmission coefficient of 94.4% and (b) a 120 ° bend at λ = 633 nm (red light) with a calculated transmission coefficient of 98.2 % .

Fig. 4
Fig. 4

Transmission characteristics of the basic waveguiding building blocks, that is, 120 ° and 90 ° bends for three metallic materials, silver, gold, and nickel, at temperature T = 298 K .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Z i ( ω ) = j Z b k 0 t [ ( ϵ m 1 ) j ϵ m tan δ ] i ,
ϵ m ( ω ) = 1 ϵ ω p 2 + v c 2 ω 2 + v c 2 + j ϵ ω p 2 + v c 2 ω v c ω 2 + v c 2 ,
v c ( ω , T ) = v c 0 [ 1 + ( h ω 2 π k B T ) 2 ] ,
E z i n c ( x , y ; x , y ) = ω μ 0 I e 4 H 0 ( 2 ) { ω ϵ b μ 0 [ ( x x ) 2 + ( y y ) 2 ] 1 2 } ,
E z s c ( x , y ) = Z b 4 i = 1 M j = 1 N w J z ( x i , y j ) H 0 ( 2 ) { ω ϵ b μ 0 [ ( x x ) 2 + ( y y ) 2 ] 1 2 } d y j .

Metrics