Abstract

Digital in-line holographic microscopy is a promising new tool for high resolution imaging. We demonstrate, by using latex beads, that a considerable increase in numerical aperture, and, therefore, resolution can be achieved if the space between a source and a CCD camera chip is filled with a high refractive index medium. The high refractive index medium implies a shorter effective wavelength so that submicrometer resolution can be obtained with laser light in the visible range.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, Proc. Natl. Acad. Sci. U.S.A. 98, 11301 (2001).
    [CrossRef] [PubMed]
  2. H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, J. Phys. Condens. Matter 13, 10729 (2001).
    [CrossRef]
  3. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, Appl. Opt. 41, 5367 (2002).
    [CrossRef] [PubMed]
  4. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, Opt. Lett. 28, 164 (2003).
    [CrossRef] [PubMed]
  5. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, Appl. Opt. 45, 836 (2006).
    [CrossRef] [PubMed]
  6. E. Hecht and A. Zajac, Optics (Addison-Wesley, 1979).
  7. D. Gabor, Nature 161, 777 (1948).
    [CrossRef] [PubMed]
  8. H. J. Kreuzer and R. A. Pawlitzek, (1993-1998) LEEPS Version 1.2, ''A software package for the simulation and reconstruction of Low Energy Electron Point Source images and other holograms,'' (Helix Science Applications, Canada).
  9. L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, Opt. Commun. 251, 44 (2005).
    [CrossRef]

2006 (1)

2005 (1)

L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, Opt. Commun. 251, 44 (2005).
[CrossRef]

2003 (1)

2002 (1)

2001 (2)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, Proc. Natl. Acad. Sci. U.S.A. 98, 11301 (2001).
[CrossRef] [PubMed]

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, J. Phys. Condens. Matter 13, 10729 (2001).
[CrossRef]

1979 (1)

E. Hecht and A. Zajac, Optics (Addison-Wesley, 1979).

1948 (1)

D. Gabor, Nature 161, 777 (1948).
[CrossRef] [PubMed]

Chittofrati, R.

L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, Opt. Commun. 251, 44 (2005).
[CrossRef]

Gabor, D.

D. Gabor, Nature 161, 777 (1948).
[CrossRef] [PubMed]

Garcia-Sucerquia, J.

Hecht, E.

E. Hecht and A. Zajac, Optics (Addison-Wesley, 1979).

Jericho, M. H.

Jericho, S. K.

Klages, P.

Kreuzer, H. J.

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, Appl. Opt. 45, 836 (2006).
[CrossRef] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, Opt. Lett. 28, 164 (2003).
[CrossRef] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, Appl. Opt. 41, 5367 (2002).
[CrossRef] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, Proc. Natl. Acad. Sci. U.S.A. 98, 11301 (2001).
[CrossRef] [PubMed]

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, J. Phys. Condens. Matter 13, 10729 (2001).
[CrossRef]

H. J. Kreuzer and R. A. Pawlitzek, (1993-1998) LEEPS Version 1.2, ''A software package for the simulation and reconstruction of Low Energy Electron Point Source images and other holograms,'' (Helix Science Applications, Canada).

Meinertzhagen, I. A.

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, Opt. Lett. 28, 164 (2003).
[CrossRef] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, Appl. Opt. 41, 5367 (2002).
[CrossRef] [PubMed]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, Proc. Natl. Acad. Sci. U.S.A. 98, 11301 (2001).
[CrossRef] [PubMed]

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, J. Phys. Condens. Matter 13, 10729 (2001).
[CrossRef]

Pawlitzek, R. A.

H. J. Kreuzer and R. A. Pawlitzek, (1993-1998) LEEPS Version 1.2, ''A software package for the simulation and reconstruction of Low Energy Electron Point Source images and other holograms,'' (Helix Science Applications, Canada).

Piano, E.

L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, Opt. Commun. 251, 44 (2005).
[CrossRef]

Pontiggia, C.

L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, Opt. Commun. 251, 44 (2005).
[CrossRef]

Repetto, L.

L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, Opt. Commun. 251, 44 (2005).
[CrossRef]

Xu, W.

Zajac, A.

E. Hecht and A. Zajac, Optics (Addison-Wesley, 1979).

Appl. Opt. (2)

J. Phys. Condens. Matter (1)

H. J. Kreuzer, M. H. Jericho, I. A. Meinertzhagen, and W. Xu, J. Phys. Condens. Matter 13, 10729 (2001).
[CrossRef]

Nature (1)

D. Gabor, Nature 161, 777 (1948).
[CrossRef] [PubMed]

Opt. Commun. (1)

L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, Opt. Commun. 251, 44 (2005).
[CrossRef]

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, Proc. Natl. Acad. Sci. U.S.A. 98, 11301 (2001).
[CrossRef] [PubMed]

Other (2)

H. J. Kreuzer and R. A. Pawlitzek, (1993-1998) LEEPS Version 1.2, ''A software package for the simulation and reconstruction of Low Energy Electron Point Source images and other holograms,'' (Helix Science Applications, Canada).

E. Hecht and A. Zajac, Optics (Addison-Wesley, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Principle of immersion DMM. The space between the object and the screen (CCD chip) is filled with a high refractive index medium. The high index medium shortens the wavelength and increases the numerical aperture.

Fig. 2
Fig. 2

A, Hologram of a deposit of 1.09 μ m diameter latex beads on a coverslip imaged in air with green light ( 532 nm ) ; source–screen distance = 15 mm , source–object distance = 0.4 mm . B, Reconstructed hologram showing a distribution of beads over the surface of the coverslip.

Fig. 3
Fig. 3

A, Central section of the reconstructed area in Fig. 2b showing single beads, bead dimers, and bead clusters that are not clearly resolved. B, Intensity variation (dotted curve) through a dimer along the line shown in A. Only a single maximum is observed and the individual beads are not resolved. C, Reconstruction of a dimer from a simulated hologram using a wavelength of 532 nm . The intensity profile through this dimer (solid curve in B) only shows a single maximum and is similar to the experimental profile.

Fig. 4
Fig. 4

A, Reconstruction of the same area shown in Fig. 3a but with the chamber filled with oil. All bead dimers and clusters are now clearly resolved. B, Intensity profile (dotted curve) along the bead dimer indicated in A. The strong minimum at the center clearly shows the better than 1 μ m resolution obtained with the oil. C, Reconstruction of a dimer from a simulated hologram using an effective wavelength of 355 nm . The intensity profile through this dimer (solid curve in B) is indistinguishable from the experimental profile.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

K ( r ) = screen d 2 ξ I ̃ ( ξ ) exp [ i k r ξ ξ ] ,

Metrics