Abstract

We studied focusing in a two-dimensional metamaterial that was based on a labyrinth structure. We theoretically showed that the labyrinth-based metamaterial exhibits negative indices of refraction between 6 and 6.4GHz. We experimentally studied the focusing effect by measuring electric field intensities on the output side of the metamaterial when the source was placed in front of the input side of the metamaterial. Our experimental results showed that it is in fact possible to focus the source field with half-widths as small as λ4 by using the labyrinth-based metamaterial.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
    [CrossRef] [PubMed]
  2. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef] [PubMed]
  3. M. Nieto-Vesperinas, J. Opt. Soc. Am. A 21, 491 (2004).
    [CrossRef]
  4. J. Pendry, A. Holden, W. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
    [CrossRef] [PubMed]
  5. J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
    [CrossRef]
  6. R. Marques, F. Medina, and R. Rafii-El-Idrissi, Phys. Rev. B 65, 144440 (2002).
    [CrossRef]
  7. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Appl. Phys. Lett. 84, 2943 (2004).
    [CrossRef]
  8. I. Bulu, H. Caglayan, and E. Ozbay, Opt. Express 13, 10238 (2005).
    [CrossRef] [PubMed]
  9. D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
    [CrossRef]
  10. K. Aydin, K. Guven, C. M. Soukoulis, and E. Ozbay, Appl. Phys. Lett. 86, 124102 (2005).
    [CrossRef]
  11. User Manual Version 5.0 (CST GmbH, 2005).
  12. A. Grbic and G. V. Eleftheriades, Appl. Phys. Lett. 82, 1815 (2003).
    [CrossRef]

2005 (2)

I. Bulu, H. Caglayan, and E. Ozbay, Opt. Express 13, 10238 (2005).
[CrossRef] [PubMed]

K. Aydin, K. Guven, C. M. Soukoulis, and E. Ozbay, Appl. Phys. Lett. 86, 124102 (2005).
[CrossRef]

2004 (2)

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Appl. Phys. Lett. 84, 2943 (2004).
[CrossRef]

M. Nieto-Vesperinas, J. Opt. Soc. Am. A 21, 491 (2004).
[CrossRef]

2003 (1)

A. Grbic and G. V. Eleftheriades, Appl. Phys. Lett. 82, 1815 (2003).
[CrossRef]

2002 (2)

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[CrossRef]

R. Marques, F. Medina, and R. Rafii-El-Idrissi, Phys. Rev. B 65, 144440 (2002).
[CrossRef]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

2000 (1)

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

1996 (1)

J. Pendry, A. Holden, W. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Aydin, K.

K. Aydin, K. Guven, C. M. Soukoulis, and E. Ozbay, Appl. Phys. Lett. 86, 124102 (2005).
[CrossRef]

Bulu, I.

Caglayan, H.

Economou, E. N.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Appl. Phys. Lett. 84, 2943 (2004).
[CrossRef]

Eleftheriades, G. V.

A. Grbic and G. V. Eleftheriades, Appl. Phys. Lett. 82, 1815 (2003).
[CrossRef]

Grbic, A.

A. Grbic and G. V. Eleftheriades, Appl. Phys. Lett. 82, 1815 (2003).
[CrossRef]

Guven, K.

K. Aydin, K. Guven, C. M. Soukoulis, and E. Ozbay, Appl. Phys. Lett. 86, 124102 (2005).
[CrossRef]

Holden, A.

J. Pendry, A. Holden, W. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Kafesaki, M.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Appl. Phys. Lett. 84, 2943 (2004).
[CrossRef]

Katsarakis, N.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Appl. Phys. Lett. 84, 2943 (2004).
[CrossRef]

Koschny, T.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Appl. Phys. Lett. 84, 2943 (2004).
[CrossRef]

Marko, P.

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Marques, R.

R. Marques, F. Medina, and R. Rafii-El-Idrissi, Phys. Rev. B 65, 144440 (2002).
[CrossRef]

Medina, F.

R. Marques, F. Medina, and R. Rafii-El-Idrissi, Phys. Rev. B 65, 144440 (2002).
[CrossRef]

Nieto-Vesperinas, M.

Ozbay, E.

I. Bulu, H. Caglayan, and E. Ozbay, Opt. Express 13, 10238 (2005).
[CrossRef] [PubMed]

K. Aydin, K. Guven, C. M. Soukoulis, and E. Ozbay, Appl. Phys. Lett. 86, 124102 (2005).
[CrossRef]

Pendry, J.

J. Pendry, A. Holden, W. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Rafii-El-Idrissi, R.

R. Marques, F. Medina, and R. Rafii-El-Idrissi, Phys. Rev. B 65, 144440 (2002).
[CrossRef]

Robins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Schultz, S.

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Smith, D. R.

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[CrossRef]

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Soukoulis, C. M.

K. Aydin, K. Guven, C. M. Soukoulis, and E. Ozbay, Appl. Phys. Lett. 86, 124102 (2005).
[CrossRef]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Appl. Phys. Lett. 84, 2943 (2004).
[CrossRef]

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Stewart, W.

J. Pendry, A. Holden, W. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

Youngs, I.

J. Pendry, A. Holden, W. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Appl. Phys. Lett. 84, 2943 (2004).
[CrossRef]

K. Aydin, K. Guven, C. M. Soukoulis, and E. Ozbay, Appl. Phys. Lett. 86, 124102 (2005).
[CrossRef]

A. Grbic and G. V. Eleftheriades, Appl. Phys. Lett. 82, 1815 (2003).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (1)

Phys. Rev. B (2)

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[CrossRef]

R. Marques, F. Medina, and R. Rafii-El-Idrissi, Phys. Rev. B 65, 144440 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

J. Pendry, A. Holden, W. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
[CrossRef] [PubMed]

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Science (1)

R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
[CrossRef] [PubMed]

Other (1)

User Manual Version 5.0 (CST GmbH, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Labyrinth structure: r 1 = 1.35 mm , r 2 = 1.8 mm , r 3 = 2.25 mm , r 4 = 2.7 mm , g = 0.15 mm , w = 0.3 mm , and d = 0.15 mm . (b) Unit cell of the two-dimensional labyrinth-based left-handed metamaterial.

Fig. 2
Fig. 2

(a) Phase differences between the ends of isotropic FR4 slabs (dashed curves) and the labyrinth-based metamaterial (solid curves). (b) Calculated indices of refraction for the labyrinth-based metamaterial. Inset, measured spectrum of transmission through the labyrinth-based composite metamaterial medium (solid curve) and the simulated transmission spectrum (dotted curve).

Fig. 3
Fig. 3

(Color online) Measured electric field intensities on the output side of the metamaterial when the source was (a) 2 and (b) 1 cm away from the input surface of the metamaterial.

Fig. 4
Fig. 4

Measured intensity profile of the source monopole antenna along the x axis in free space when it was placed (curve A) 2 and (curve B) 8 cm away from the receiver antenna. Measured intensity profile along the x axis on the output side of the metamaterial when the source was placed (curve C) 2 and (curve D) 1 cm away from the input surface of the metamaterial.

Metrics