Abstract

A new optical method to obtain multifactor image encoding and authentication is proposed. The encoded complex-amplitude image function fulfills the general requirements of invisible content, extreme difficulty in copying or counterfeiting, and real-time automatic verification. This optical technique is attractive for high-security purposes that require multifactor reliable authentication. A demonstration using a combination of biometric images and key codes is provided. Retina images, which are very effective for authentication, are used as biometric signals. To the best of our knowledge, this is the first report on combined multiple signal encoding and simultaneous AND authentications for optical security reinforcement.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Javidi, Optical and Digital Techniques for Information Security (Springer, 2005).
    [CrossRef]
  2. P. Réfrégier and B. Javidi, Opt. Lett. 20, 767 (1995).
    [CrossRef] [PubMed]
  3. A. Mahalanobis, in Optoelectronic Devices and Systems for Processing, B.Javidi and K.M.Johnson, eds., Vol. CR65 of Critical Review Series (SPIE, 1996), pp. 240-260.
  4. F.Sadjadi, ed., Automatic Target Recognition, Vol. 6 of Selected SPIE Papers on CD-Rom (SPIE, 2000).
  5. B. Ganeshan, D. Techkedath, R. Young, and C. Chatwin, Opt. Lasers Eng. 44, 1 (2006).
    [CrossRef]
  6. N. Towghi, B. Javidi, and Z. Luo, J. Opt. Soc. Am. A 16, 1915 (1999).
    [CrossRef]
  7. F. Goudail, F. Bollaro, B. Javidi, and Ph. Réfrégier, J. Opt. Soc. Am. A 15, 2629 (1998).
    [CrossRef]
  8. S. Maze and Ph. Réfrégier, Opt. Lett. 17, 426 (1992).
    [CrossRef] [PubMed]
  9. L. O'Gorman, Proc. IEEE 91, 2021 (2003).
    [CrossRef]
  10. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  11. E. Pérez, K. Chalasinska-Macukow, K. Styczynski, R. Kotynski, and M. S. Millán, J. Mod. Opt. 44, 1535 (1997).
    [CrossRef]
  12. B. Javidi, in Real-Time Optical Information Processing, B.Javidi and J.L.Horner, eds. (Academic, 1994), pp. 115-183.
  13. T. Kotzer, J. Rosen, and J. Shamir, Appl. Opt. 31, 1126 (1992).
    [CrossRef] [PubMed]
  14. O. Matoba and B. Javidi, Opt. Lett. 24, 762 (1999).
    [CrossRef]

2006 (1)

B. Ganeshan, D. Techkedath, R. Young, and C. Chatwin, Opt. Lasers Eng. 44, 1 (2006).
[CrossRef]

2003 (1)

L. O'Gorman, Proc. IEEE 91, 2021 (2003).
[CrossRef]

1999 (2)

1998 (1)

1997 (1)

E. Pérez, K. Chalasinska-Macukow, K. Styczynski, R. Kotynski, and M. S. Millán, J. Mod. Opt. 44, 1535 (1997).
[CrossRef]

1995 (1)

1992 (2)

Bollaro, F.

Chalasinska-Macukow, K.

E. Pérez, K. Chalasinska-Macukow, K. Styczynski, R. Kotynski, and M. S. Millán, J. Mod. Opt. 44, 1535 (1997).
[CrossRef]

Chatwin, C.

B. Ganeshan, D. Techkedath, R. Young, and C. Chatwin, Opt. Lasers Eng. 44, 1 (2006).
[CrossRef]

Ganeshan, B.

B. Ganeshan, D. Techkedath, R. Young, and C. Chatwin, Opt. Lasers Eng. 44, 1 (2006).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Goudail, F.

Javidi, B.

Kotynski, R.

E. Pérez, K. Chalasinska-Macukow, K. Styczynski, R. Kotynski, and M. S. Millán, J. Mod. Opt. 44, 1535 (1997).
[CrossRef]

Kotzer, T.

Luo, Z.

Mahalanobis, A.

A. Mahalanobis, in Optoelectronic Devices and Systems for Processing, B.Javidi and K.M.Johnson, eds., Vol. CR65 of Critical Review Series (SPIE, 1996), pp. 240-260.

Matoba, O.

Maze, S.

Millán, M. S.

E. Pérez, K. Chalasinska-Macukow, K. Styczynski, R. Kotynski, and M. S. Millán, J. Mod. Opt. 44, 1535 (1997).
[CrossRef]

O'Gorman, L.

L. O'Gorman, Proc. IEEE 91, 2021 (2003).
[CrossRef]

Pérez, E.

E. Pérez, K. Chalasinska-Macukow, K. Styczynski, R. Kotynski, and M. S. Millán, J. Mod. Opt. 44, 1535 (1997).
[CrossRef]

Réfrégier, P.

Réfrégier, Ph.

Rosen, J.

Shamir, J.

Styczynski, K.

E. Pérez, K. Chalasinska-Macukow, K. Styczynski, R. Kotynski, and M. S. Millán, J. Mod. Opt. 44, 1535 (1997).
[CrossRef]

Techkedath, D.

B. Ganeshan, D. Techkedath, R. Young, and C. Chatwin, Opt. Lasers Eng. 44, 1 (2006).
[CrossRef]

Towghi, N.

Young, R.

B. Ganeshan, D. Techkedath, R. Young, and C. Chatwin, Opt. Lasers Eng. 44, 1 (2006).
[CrossRef]

Appl. Opt. (1)

J. Mod. Opt. (1)

E. Pérez, K. Chalasinska-Macukow, K. Styczynski, R. Kotynski, and M. S. Millán, J. Mod. Opt. 44, 1535 (1997).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Lasers Eng. (1)

B. Ganeshan, D. Techkedath, R. Young, and C. Chatwin, Opt. Lasers Eng. 44, 1 (2006).
[CrossRef]

Opt. Lett. (3)

Proc. IEEE (1)

L. O'Gorman, Proc. IEEE 91, 2021 (2003).
[CrossRef]

Other (5)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

A. Mahalanobis, in Optoelectronic Devices and Systems for Processing, B.Javidi and K.M.Johnson, eds., Vol. CR65 of Critical Review Series (SPIE, 1996), pp. 240-260.

F.Sadjadi, ed., Automatic Target Recognition, Vol. 6 of Selected SPIE Papers on CD-Rom (SPIE, 2000).

B. Javidi, in Real-Time Optical Information Processing, B.Javidi and J.L.Horner, eds. (Academic, 1994), pp. 115-183.

B. Javidi, Optical and Digital Techniques for Information Security (Springer, 2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical processor for multifactor authentication.

Fig. 2
Fig. 2

Retina images: (a) s ( x ) right eye, (b) r ( x ) left eye.

Fig. 3
Fig. 3

Encoded image ψ ( x ) : (a) magnitude, (b) phase.

Fig. 4
Fig. 4

Output intensity distribution.

Tables (1)

Tables Icon

Table 1 Maximum Value of the Output Intensity of Term 1

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ψ ( x ) = t r + 2 b ( x ) t s ( x ) F 1 [ t 2 n ( x ) ] ,
I ( u ) = F [ ψ ( x a ) + t p + 2 b ( x + a ) ] 2 .
Term 1 : F * [ ψ ( x ) ] F [ t p + 2 b ( x ) ] exp { j 2 a u } = T r + 2 b * ( u ) T s * ( u ) t 2 n * ( u ) T p + 2 b ( u ) exp { j 2 a u } ;
Term 2 : F [ ψ ( x ) ] F * [ t p + 2 b ( x ) ] exp { j 2 a u } = T r + 2 b ( u ) T s ( u ) t 2 n ( u ) T p + 2 b * ( u ) exp { 2 j a u } ,
Term 1 : [ T q ( u ) T s * ( u ) T s ( u ) ] [ T r + 2 b * ( u ) T p + 2 b ( u ) T r + 2 b ( u ) T p + 2 b ( u ) ] [ t 2 n * ( u ) t 2 n ( u ) ] exp { j 2 a u } ,
Term 2 : [ T q ( u ) T s ( u ) T s ( u ) ] [ T r + 2 b ( u ) T p + 2 b * ( u ) T r + 2 b ( u ) T p + 2 b ( u ) ] [ t 4 n ( u ) ] exp { j 2 a u } .
A C POF [ t s ( x ) ] A C PPC * [ t r + 2 b ( x ) ] A C CMF * [ T 2 n ( x ) ] δ ( x + 2 a ) 2 ,

Metrics