Abstract

Recent predictions concerning the relationship between the degree of polarization at a typical point of a Young interference pattern and the degree of coherence of the electromagnetic field at the pinholes are tested by a simple experiment. In particular, it is shown that light that is completely unpolarized at the pinholes can become partially polarized across the fringe pattern.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. F. V. James, J. Opt. Soc. Am. A 11, 1641 (1994).
    [CrossRef]
  2. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, Pure Appl. Opt. 7, 941 (1998).
    [CrossRef]
  3. T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).
    [CrossRef]
  4. F. Gori, M. Santarsiero, R. Simon, G. Piquero, R. Borghi, and G. Guattari, J. Opt. Soc. Am. A 20, 78 (2003).
    [CrossRef]
  5. J. Tervo, T. Setala, and A. T. Friberg, J. Opt. Soc. Am. A 21, 2205 (2004).
    [CrossRef]
  6. E. Wolf, Phys. Lett. A 312, 263 (2003).
    [CrossRef]
  7. E. Wolf, Opt. Lett. 28, 1078 (2003).
    [CrossRef] [PubMed]
  8. M. Salem, O. Korotkova, A. Dogariu, and E. Wolf, Waves Random Media 14, 513 (2004).
    [CrossRef]
  9. O. Korotkova and E. Wolf, Opt. Lett. 30, 198 (2005).
    [CrossRef] [PubMed]
  10. H. Roychowdhury and E. Wolf, Opt. Commun. 252, 268 (2005).
    [CrossRef]
  11. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995).
  12. J. Tervo, T. Setälä, and A. T. Friberg, Opt. Express 11, 1137 (2003).
    [CrossRef] [PubMed]
  13. P. Réfrégier, Opt. Lett. 30, 3117 (2005).
    [CrossRef] [PubMed]
  14. P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
    [CrossRef]
  15. E. Collett and E. Wolf, Opt. Lett. 2, 27 (1978).
    [CrossRef] [PubMed]
  16. B. Karczewski, Nuovo Cimento 30, 905 (1963).

2005 (3)

2004 (2)

J. Tervo, T. Setala, and A. T. Friberg, J. Opt. Soc. Am. A 21, 2205 (2004).
[CrossRef]

M. Salem, O. Korotkova, A. Dogariu, and E. Wolf, Waves Random Media 14, 513 (2004).
[CrossRef]

2003 (4)

2002 (1)

T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).
[CrossRef]

1998 (1)

F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, Pure Appl. Opt. 7, 941 (1998).
[CrossRef]

1994 (1)

1979 (1)

P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

1978 (1)

1963 (1)

B. Karczewski, Nuovo Cimento 30, 905 (1963).

Borghi, R.

F. Gori, M. Santarsiero, R. Simon, G. Piquero, R. Borghi, and G. Guattari, J. Opt. Soc. Am. A 20, 78 (2003).
[CrossRef]

F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, Pure Appl. Opt. 7, 941 (1998).
[CrossRef]

Collett, E.

De Santis, P.

P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

Dogariu, A.

M. Salem, O. Korotkova, A. Dogariu, and E. Wolf, Waves Random Media 14, 513 (2004).
[CrossRef]

Friberg, A. T.

Gori, F.

F. Gori, M. Santarsiero, R. Simon, G. Piquero, R. Borghi, and G. Guattari, J. Opt. Soc. Am. A 20, 78 (2003).
[CrossRef]

F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, Pure Appl. Opt. 7, 941 (1998).
[CrossRef]

P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

Guattari, G.

F. Gori, M. Santarsiero, R. Simon, G. Piquero, R. Borghi, and G. Guattari, J. Opt. Soc. Am. A 20, 78 (2003).
[CrossRef]

F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, Pure Appl. Opt. 7, 941 (1998).
[CrossRef]

P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

James, D. F. V.

Kaivola, M.

T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Karczewski, B.

B. Karczewski, Nuovo Cimento 30, 905 (1963).

Korotkova, O.

O. Korotkova and E. Wolf, Opt. Lett. 30, 198 (2005).
[CrossRef] [PubMed]

M. Salem, O. Korotkova, A. Dogariu, and E. Wolf, Waves Random Media 14, 513 (2004).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995).

Palma, C.

P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

Piquero, G.

Réfrégier, P.

Roychowdhury, H.

H. Roychowdhury and E. Wolf, Opt. Commun. 252, 268 (2005).
[CrossRef]

Salem, M.

M. Salem, O. Korotkova, A. Dogariu, and E. Wolf, Waves Random Media 14, 513 (2004).
[CrossRef]

Santarsiero, M.

F. Gori, M. Santarsiero, R. Simon, G. Piquero, R. Borghi, and G. Guattari, J. Opt. Soc. Am. A 20, 78 (2003).
[CrossRef]

F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, Pure Appl. Opt. 7, 941 (1998).
[CrossRef]

Setala, T.

J. Tervo, T. Setala, and A. T. Friberg, J. Opt. Soc. Am. A 21, 2205 (2004).
[CrossRef]

T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Setälä, T.

Shevchenko, A.

T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Simon, R.

Tervo, J.

Vicalvi, S.

F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, Pure Appl. Opt. 7, 941 (1998).
[CrossRef]

Wolf, E.

O. Korotkova and E. Wolf, Opt. Lett. 30, 198 (2005).
[CrossRef] [PubMed]

H. Roychowdhury and E. Wolf, Opt. Commun. 252, 268 (2005).
[CrossRef]

M. Salem, O. Korotkova, A. Dogariu, and E. Wolf, Waves Random Media 14, 513 (2004).
[CrossRef]

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

E. Wolf, Opt. Lett. 28, 1078 (2003).
[CrossRef] [PubMed]

E. Collett and E. Wolf, Opt. Lett. 2, 27 (1978).
[CrossRef] [PubMed]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995).

J. Opt. Soc. Am. A (3)

Nuovo Cimento (1)

B. Karczewski, Nuovo Cimento 30, 905 (1963).

Opt. Commun. (2)

P. De Santis, F. Gori, G. Guattari, and C. Palma, Opt. Commun. 29, 256 (1979).
[CrossRef]

H. Roychowdhury and E. Wolf, Opt. Commun. 252, 268 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Lett. A (1)

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

Phys. Rev. E (1)

T. Setala, A. Shevchenko, M. Kaivola, and A. T. Friberg, Phys. Rev. E 66, 016615 (2002).
[CrossRef]

Pure Appl. Opt. (1)

F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, and G. Guattari, Pure Appl. Opt. 7, 941 (1998).
[CrossRef]

Waves Random Media (1)

M. Salem, O. Korotkova, A. Dogariu, and E. Wolf, Waves Random Media 14, 513 (2004).
[CrossRef]

Other (1)

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Degree of polarization P at the center of the fringe pattern, as a function of the degree of coherence at the pinholes μ ( 0 ) , for the case where the degree of polarization at the pinholes is P ( 0 ) = 0 , for different values of the ratio δ x δ y .

Fig. 2
Fig. 2

Experimental setup. L 1 , L 2 , L 3 , L 4 , lenses; BS, beam splitter; G, rotating ground glass; F, Gaussian amplitude filter; Y, pinhole Young mask; P, linear polarizer; D, detector.

Fig. 3
Fig. 3

Experimental values (dots) of the axial degree of polarization P of the light as functions of the spectral degree of coherence μ ( 0 ) at the pinholes, measured for different values of the ratio δ x δ y . The solid curves are theoretical values calculated from Eq. (7), with P ( 0 ) = 0 .

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

W ( 0 ) ( ρ 1 , ρ 2 ; ω ) = [ W x x ( 0 ) ( ρ 1 , ρ 2 ; ω ) W x y ( 0 ) ( ρ 1 , ρ 2 ; ω ) W y x ( 0 ) ( ρ 1 , ρ 2 ; ω ) W y y ( 0 ) ( ρ 1 , ρ 2 ; ω ) ] ,
W x x ( 0 ) ( ρ 1 , ρ 2 ; ω ) = s ( ω ) exp ( ρ 1 2 + ρ 2 2 4 σ 2 ) exp [ ( ρ 1 ρ 2 ) 2 2 δ x 2 ] ,
W y y ( 0 ) ( ρ 1 , ρ 2 ; ω ) = s ( ω ) B exp ( ρ 1 2 + ρ 2 2 4 σ 2 ) exp [ ( ρ 1 ρ 2 ) 2 2 δ y 2 ] ,
W x y ( 0 ) ( ρ 1 , ρ 2 ; ω ) = W y x ( 0 ) ( ρ 1 , ρ 2 ; ω ) = 0 .
P ( 0 ) ( ρ , ω ) = 1 4 Det W ( ρ , ρ , ω ) [ Tr W ( ρ , ρ , ω ) ] 2 ,
P ( 0 ) = 1 B 1 + B .
μ ( 0 ) ( ρ 1 , ρ 2 , ω ) = Tr W ( ρ 1 , ρ 2 , ω ) Tr W ( ρ 1 , ρ 1 , ω ) Tr W ( ρ 2 , ρ 2 , ω ) .
μ ( 0 ) = exp ( 2 x 2 δ x 2 ) + B exp ( 2 x 2 δ y 2 ) 1 + B .
P = 2 P ( 0 ) + ( 1 + P ( 0 ) ) exp ( 2 x 2 δ x 2 ) ( 1 P ( 0 ) ) exp ( 2 x 2 δ y 2 ) 2 + ( 1 + P ( 0 ) ) exp ( 2 x 2 δ x 2 ) + ( 1 P ( 0 ) ) exp ( 2 x 2 δ y 2 ) .

Metrics