Abstract
A novel method for the generation of high-energy ultrashort optical pulses is described and studied theoretically and numerically. Through the combination of parametric amplification and enhancement cavities, this method opens a route to generate few-cycle pulses at unprecedented average power levels through the use of a low-energy, high average-power pump source and energy storage in the enhancement cavity. Dispersion in the enhancement cavity ceases to be a concern with the use of long pump pulses. Limitations set by the Kerr nonlinearity of the amplifier crystal are analyzed, and ways to overcome them using self-defocusing nonlinearities are discussed.
© 2006 Optical Society of America
Full Article | PDF ArticleOSA Recommended Articles
Qingbin Zhang, Eiji J. Takahashi, Oliver D. Mücke, Peixiang Lu, and Katsumi Midorikawa
Opt. Express 19(8) 7190-7212 (2011)
Ian N. Ross, Pavel Matousek, Geoffrey H. C. New, and Karoly Osvay
J. Opt. Soc. Am. B 19(12) 2945-2956 (2002)
Daniel Herrmann, Raphael Tautz, Franz Tavella, Ferenc Krausz, and Laszlo Veisz
Opt. Express 18(5) 4170-4183 (2010)