Abstract

We demonstrate that first-order light shifts can be canceled for an all-optical, three-photon-absorption resonance (N-resonance) on the D1 transition of Rb87. This light-shift cancellation facilitates improved frequency stability for an N-resonance clock. For example, by using a tabletop apparatus designed for N-resonance spectroscopy, we measured a short-term fractional frequency stability (Allan deviation) of 1.5×1011τ12 for observation times of 1sτ50s. Further improvements in frequency stability should be possible with an apparatus designed as a dedicated N-resonance clock.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Vanier, Appl. Phys. B 81, 421 (2005).
    [CrossRef]
  2. M. Zhu and L. S. Cutler, in Proceedings of the 32nd Precision Time and Time Interval (PTTI) Systems and Applications Meeting, 2000, L.Breakiron, ed. (U.S. Naval Observatory, Washington, D.C., 2001), p. 311.
    [PubMed]
  3. J. Vanier, M. W. Levine, D. Janssen, and M. J. Delaney, IEEE Trans. Instrum. Meas. 52, 822 (2003).
    [CrossRef]
  4. S. Zibrov, I. Novikova, D. F. Phillips, A. V. Taichenachev, V. I. Yudin, R. L. Walsworth, and A. S. Zibrov, Phys. Rev. A 71, 011801(R) (2005).
    [CrossRef]
  5. A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, Phys. Rev. A 65, 043817 (2002).
    [CrossRef]
  6. J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Hilger, 1989).
    [CrossRef]
  7. M. Merimaa, T. Lindwall, I. Tittonen, and E. Ikonen, J. Opt. Soc. Am. B 20, 273 (2003).
    [CrossRef]
  8. S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, Opt. Express 13, 1249 (2005).
    [CrossRef] [PubMed]

2005

J. Vanier, Appl. Phys. B 81, 421 (2005).
[CrossRef]

S. Zibrov, I. Novikova, D. F. Phillips, A. V. Taichenachev, V. I. Yudin, R. L. Walsworth, and A. S. Zibrov, Phys. Rev. A 71, 011801(R) (2005).
[CrossRef]

S. Knappe, P. D. D. Schwindt, V. Shah, L. Hollberg, J. Kitching, L. Liew, and J. Moreland, Opt. Express 13, 1249 (2005).
[CrossRef] [PubMed]

2003

M. Merimaa, T. Lindwall, I. Tittonen, and E. Ikonen, J. Opt. Soc. Am. B 20, 273 (2003).
[CrossRef]

J. Vanier, M. W. Levine, D. Janssen, and M. J. Delaney, IEEE Trans. Instrum. Meas. 52, 822 (2003).
[CrossRef]

2002

A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, Phys. Rev. A 65, 043817 (2002).
[CrossRef]

Audoin, C.

J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Hilger, 1989).
[CrossRef]

Cutler, L. S.

M. Zhu and L. S. Cutler, in Proceedings of the 32nd Precision Time and Time Interval (PTTI) Systems and Applications Meeting, 2000, L.Breakiron, ed. (U.S. Naval Observatory, Washington, D.C., 2001), p. 311.
[PubMed]

Delaney, M. J.

J. Vanier, M. W. Levine, D. Janssen, and M. J. Delaney, IEEE Trans. Instrum. Meas. 52, 822 (2003).
[CrossRef]

Hollberg, L.

Ikonen, E.

Janssen, D.

J. Vanier, M. W. Levine, D. Janssen, and M. J. Delaney, IEEE Trans. Instrum. Meas. 52, 822 (2003).
[CrossRef]

Kitching, J.

Knappe, S.

Levine, M. W.

J. Vanier, M. W. Levine, D. Janssen, and M. J. Delaney, IEEE Trans. Instrum. Meas. 52, 822 (2003).
[CrossRef]

Liew, L.

Lindwall, T.

Matsko, A. B.

A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, Phys. Rev. A 65, 043817 (2002).
[CrossRef]

Merimaa, M.

Moreland, J.

Novikova, I.

S. Zibrov, I. Novikova, D. F. Phillips, A. V. Taichenachev, V. I. Yudin, R. L. Walsworth, and A. S. Zibrov, Phys. Rev. A 71, 011801(R) (2005).
[CrossRef]

Phillips, D. F.

S. Zibrov, I. Novikova, D. F. Phillips, A. V. Taichenachev, V. I. Yudin, R. L. Walsworth, and A. S. Zibrov, Phys. Rev. A 71, 011801(R) (2005).
[CrossRef]

Rostovtsev, Y. V.

A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, Phys. Rev. A 65, 043817 (2002).
[CrossRef]

Schwindt, P. D. D.

Scully, M. O.

A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, Phys. Rev. A 65, 043817 (2002).
[CrossRef]

Shah, V.

Taichenachev, A. V.

S. Zibrov, I. Novikova, D. F. Phillips, A. V. Taichenachev, V. I. Yudin, R. L. Walsworth, and A. S. Zibrov, Phys. Rev. A 71, 011801(R) (2005).
[CrossRef]

Tittonen, I.

Vanier, J.

J. Vanier, Appl. Phys. B 81, 421 (2005).
[CrossRef]

J. Vanier, M. W. Levine, D. Janssen, and M. J. Delaney, IEEE Trans. Instrum. Meas. 52, 822 (2003).
[CrossRef]

J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Hilger, 1989).
[CrossRef]

Walsworth, R. L.

S. Zibrov, I. Novikova, D. F. Phillips, A. V. Taichenachev, V. I. Yudin, R. L. Walsworth, and A. S. Zibrov, Phys. Rev. A 71, 011801(R) (2005).
[CrossRef]

Ye, C. Y.

A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, Phys. Rev. A 65, 043817 (2002).
[CrossRef]

Yudin, V. I.

S. Zibrov, I. Novikova, D. F. Phillips, A. V. Taichenachev, V. I. Yudin, R. L. Walsworth, and A. S. Zibrov, Phys. Rev. A 71, 011801(R) (2005).
[CrossRef]

Zhu, M.

M. Zhu and L. S. Cutler, in Proceedings of the 32nd Precision Time and Time Interval (PTTI) Systems and Applications Meeting, 2000, L.Breakiron, ed. (U.S. Naval Observatory, Washington, D.C., 2001), p. 311.
[PubMed]

Zibrov, A. S.

S. Zibrov, I. Novikova, D. F. Phillips, A. V. Taichenachev, V. I. Yudin, R. L. Walsworth, and A. S. Zibrov, Phys. Rev. A 71, 011801(R) (2005).
[CrossRef]

A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, Phys. Rev. A 65, 043817 (2002).
[CrossRef]

Zibrov, S.

S. Zibrov, I. Novikova, D. F. Phillips, A. V. Taichenachev, V. I. Yudin, R. L. Walsworth, and A. S. Zibrov, Phys. Rev. A 71, 011801(R) (2005).
[CrossRef]

Appl. Phys. B

J. Vanier, Appl. Phys. B 81, 421 (2005).
[CrossRef]

IEEE Trans. Instrum. Meas.

J. Vanier, M. W. Levine, D. Janssen, and M. J. Delaney, IEEE Trans. Instrum. Meas. 52, 822 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Phys. Rev. A

S. Zibrov, I. Novikova, D. F. Phillips, A. V. Taichenachev, V. I. Yudin, R. L. Walsworth, and A. S. Zibrov, Phys. Rev. A 71, 011801(R) (2005).
[CrossRef]

A. S. Zibrov, C. Y. Ye, Y. V. Rostovtsev, A. B. Matsko, and M. O. Scully, Phys. Rev. A 65, 043817 (2002).
[CrossRef]

Other

J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards (Hilger, 1989).
[CrossRef]

M. Zhu and L. S. Cutler, in Proceedings of the 32nd Precision Time and Time Interval (PTTI) Systems and Applications Meeting, 2000, L.Breakiron, ed. (U.S. Naval Observatory, Washington, D.C., 2001), p. 311.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(Color online) (a) N-resonance interaction scheme. Ω P and Ω D are the probe and drive optical fields that create and interrogate the N-resonance, respectively; ν 0 is the hyperfine splitting of the two lower energy levels, b and c ; γ is the collisionally broadened decoherence rate of the excited state a ; and Δ is the one-photon detuning of the probe field from resonance with the c to a transition. (b) Sample N-resonance spectrum. Probe transmission is normalized to unity away from the two-photon resonance. Zero two-photon detuning corresponds to an EOM modulation frequency of 6.8 346 896 GHz , which includes an 7 kHz buffer gas collision shift. (c) Schematic of the experimental setup. See text for abbreviations.

Fig. 2
Fig. 2

(Color online) Measured detuning light shift, i.e., N-resonance frequency shift as a function of the detuning Δ of the probe field from the 5 S 1 2 F = 2 5 P 1 2 F = 2 transition in Rb 87 vapor. (a) Example of the light shift’s dispersive-like dependence on Δ; total laser intensity 30 mW cm 2 . (b) Insensitivity of the light shift to variations in the probe field frequency and the total laser intensity near the optimized probe field detuning ( 700 MHz ) ; the probe/drive intensity ratio is 11 % , to cancel the intensity light shift (see Fig. 3).

Fig. 3
Fig. 3

(Color online) (a) Measured intensity light shift, i.e., N-resonance frequency shift as a function of laser intensity for different ratios between the probe and drive field intensities; the probe field is detuned to the light-shift maximum ( Δ 700 MHz ) . (b) Fitted linear slopes for the measured light-shift variation with laser intensity for probe/drive field intensity ratios near the intensity light-shift cancellation value. The solid diagonal line is a linear fit to the plotted slope values.

Fig. 4
Fig. 4

Measured frequency stability of a 100 MHz crystal oscillator locked to the Rb 87 N-resonance, relative to a hydrogen maser. The solid line is a fit to the early time measurements.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

δ Ω D 2 ν 0 + Δ + Ω D 2 2 ν 0 + Δ + Ω P 2 Δ Δ 2 + γ 2 4 .
δ Ω D 2 2 ν 0 ± Ω P 2 γ 2 Ω P 2 γ 3 ( Δ γ 2 ) 2 .
Δ = γ 2 , Ω P 2 Ω D 2 = γ 2 ν 0 .

Metrics