Abstract

We have developed a two-LED wobbler system to generate the spatial displacement of total light intensity on a detector surface, facilitating the acquisition of frequency responses up to 600 kHz with high accuracy. We have used this setup to characterize the low-pass filtering behavior of silicon-based position detectors for wavelengths above 850 nm by acquiring the frequency responses of several quadrant detectors and position-sensitive detectors as functions of wavelength, applied bias voltage, and total light power. We observed an increase in bandwidth for an increase in applied bias voltage and incident-light intensity. The combined effect of these parameters is strongly dependent on the detector used and has significant implications for the use of these detectors in scanning probe and optical tweezers applications.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Meyer and N. M. Amer, Appl. Phys. Lett. 53, 1045 (1988).
    [CrossRef]
  2. K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
    [CrossRef] [PubMed]
  3. F. Gittes and C. F. Schmidt, Eur. Biophys. J. 27, 75 (1998).
    [CrossRef]
  4. K. Berg-Sørensen, L. Oddershede, E. L. Florin, and H. Flyvbjerg, J. Appl. Phys. 93, 3167 (2003).
    [CrossRef]
  5. E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, Rev. Sci. Instrum. 74, 3246 (2003).
    [CrossRef]
  6. K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
    [CrossRef]
  7. J. H. G. Huisstede, K. O. van der Werf, M. L. Bennink, and V. Subramaniam, Opt. Express 13, 1113 (2005).
    [CrossRef] [PubMed]

2005 (1)

2004 (1)

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

2003 (2)

K. Berg-Sørensen, L. Oddershede, E. L. Florin, and H. Flyvbjerg, J. Appl. Phys. 93, 3167 (2003).
[CrossRef]

E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, Rev. Sci. Instrum. 74, 3246 (2003).
[CrossRef]

1998 (1)

F. Gittes and C. F. Schmidt, Eur. Biophys. J. 27, 75 (1998).
[CrossRef]

1994 (1)

K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[CrossRef] [PubMed]

1988 (1)

G. Meyer and N. M. Amer, Appl. Phys. Lett. 53, 1045 (1988).
[CrossRef]

Amer, N. M.

G. Meyer and N. M. Amer, Appl. Phys. Lett. 53, 1045 (1988).
[CrossRef]

Bennink, M. L.

Berg-Sørensen, K.

K. Berg-Sørensen, L. Oddershede, E. L. Florin, and H. Flyvbjerg, J. Appl. Phys. 93, 3167 (2003).
[CrossRef]

Block, S. M.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[CrossRef] [PubMed]

Florin, E. L.

K. Berg-Sørensen, L. Oddershede, E. L. Florin, and H. Flyvbjerg, J. Appl. Phys. 93, 3167 (2003).
[CrossRef]

Flyvbjerg, H.

K. Berg-Sørensen, L. Oddershede, E. L. Florin, and H. Flyvbjerg, J. Appl. Phys. 93, 3167 (2003).
[CrossRef]

Gittes, F.

F. Gittes and C. F. Schmidt, Eur. Biophys. J. 27, 75 (1998).
[CrossRef]

Huisstede, J. H.

Kapitein, L. C.

E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, Rev. Sci. Instrum. 74, 3246 (2003).
[CrossRef]

Meyer, G.

G. Meyer and N. M. Amer, Appl. Phys. Lett. 53, 1045 (1988).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Oddershede, L.

K. Berg-Sørensen, L. Oddershede, E. L. Florin, and H. Flyvbjerg, J. Appl. Phys. 93, 3167 (2003).
[CrossRef]

Peterman, E. J.

E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, Rev. Sci. Instrum. 74, 3246 (2003).
[CrossRef]

Schmidt, C. F.

E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, Rev. Sci. Instrum. 74, 3246 (2003).
[CrossRef]

F. Gittes and C. F. Schmidt, Eur. Biophys. J. 27, 75 (1998).
[CrossRef]

Subramaniam, V.

Svoboda, K.

K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[CrossRef] [PubMed]

van der Werf, K. O.

van Dijk, M. A.

E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, Rev. Sci. Instrum. 74, 3246 (2003).
[CrossRef]

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

G. Meyer and N. M. Amer, Appl. Phys. Lett. 53, 1045 (1988).
[CrossRef]

Eur. Biophys. J. (1)

F. Gittes and C. F. Schmidt, Eur. Biophys. J. 27, 75 (1998).
[CrossRef]

J. Appl. Phys. (1)

K. Berg-Sørensen, L. Oddershede, E. L. Florin, and H. Flyvbjerg, J. Appl. Phys. 93, 3167 (2003).
[CrossRef]

Opt. Express (1)

Rev. Sci. Instrum. (2)

E. J. G. Peterman, M. A. van Dijk, L. C. Kapitein, and C. F. Schmidt, Rev. Sci. Instrum. 74, 3246 (2003).
[CrossRef]

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Principle of frequency modulation of a LED. (b) Schematic of the LED-wobbler circuit used to superimpose the frequency modulation on the dc current: R 1 = 50 Ω , R 2 = 1 k Ω , C = 100 μ F . (c) Light intensity of both LEDs in time. The phase difference between the two LEDs is 180°. The darker curve corresponds to LED1; the lighter curve, to LED2. (d) Schematic drawing of the light impinging on a detector. The solid circle corresponds to LED1; the dotted circle, to LED2.

Fig. 2
Fig. 2

Frequency response of a quadrant detector (S5891, Hamamatsu) operating at no bias for several wavelengths with a light power of 500 μ W . Curves a–e show the frequency response for wavelengths of 800 , 850, 910, 970, and 1070 nm.

Fig. 3
Fig. 3

Frequency response of the S5981 (Hamamatsu), the QP-50-6 (Pacific Silicon Sensor) and the SPOT9DMI (UDT) detectors operating with and without bias (all QDs), measured at a wavelength of 1070 nm and a light power of 500 μ W . Curves a–c were acquired with no bias. Curves d–f correspond to the same detectors but operating with bias (S5891, bias 30 V; SPOT9DMI, bias 30 V; QP-50-6, bias 15 V).

Fig. 4
Fig. 4

Frequency response of the DL100-7-KER (Pacific Silicon Sensor) PSD for four total intensities (the wavelength used was 1070 nm). Compare the vertical scale with those of the previous figures.

Fig. 5
Fig. 5

Bandwidth as a function of wavelength for several detectors. The maximum bandwidth of 600 kHz is the bandwidth of the electronics.

Tables (1)

Tables Icon

Table 1 Influence of Light Power on the Bandwidths of Detectors

Metrics