Abstract

We prove that in the absence of phase singularities, a generalized Schell model partially coherent field is fully defined by its intensity in three planes. We discuss the implications of this result for the problem of characterizing wave fields.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Wolf, J. Opt. Soc. Am. 72, 343 (1982).
    [CrossRef]
  2. K. A. Nugent, Phys. Rev. Lett. 68, 2261 (1992).
    [CrossRef] [PubMed]
  3. M. G. Raymer, M. Beck, and D. F. McAlister, Phys. Rev. Lett. 72, 1137 (1994).
    [CrossRef] [PubMed]
  4. Ch. Kurtsiefer, T. Pfau, and J. Mlynek, Nature 386, 150 (1997).
    [CrossRef]
  5. C. Q. Tran, A. G. Peele, D. Paterson, A. Roberts, I. McNulty, and K. A. Nugent, Opt. Lett. 30, 204 (2005).
    [CrossRef] [PubMed]
  6. C. Q. Tran, A. G. Peele, D. Paterson, A. Roberts, I. McNulty, and K. A. Nugent, J. Opt. Soc. Am. A 22, 1691 (2005).
    [CrossRef]
  7. K. A. Nugent, J. Opt. Soc. Am. A 8, 1574 (1991).
    [CrossRef]
  8. T. E. Gureyev, A. Roberts, and K. A. Nugent, J. Opt. Soc. Am. A 12, 1942 (1995).
    [CrossRef]
  9. F. Gori, M. Santarsiero, and G. Guattari, J. Opt. Soc. Am. A 10, 673 (1993).
    [CrossRef]
  10. R. W. Gerchberg and W. O. Saxton, Optik (Stuttgart) 35, 237 (1972).

2005 (2)

1997 (1)

Ch. Kurtsiefer, T. Pfau, and J. Mlynek, Nature 386, 150 (1997).
[CrossRef]

1995 (1)

1994 (1)

M. G. Raymer, M. Beck, and D. F. McAlister, Phys. Rev. Lett. 72, 1137 (1994).
[CrossRef] [PubMed]

1993 (1)

1992 (1)

K. A. Nugent, Phys. Rev. Lett. 68, 2261 (1992).
[CrossRef] [PubMed]

1991 (1)

1982 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, Optik (Stuttgart) 35, 237 (1972).

Beck, M.

M. G. Raymer, M. Beck, and D. F. McAlister, Phys. Rev. Lett. 72, 1137 (1994).
[CrossRef] [PubMed]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, Optik (Stuttgart) 35, 237 (1972).

Gori, F.

Guattari, G.

Gureyev, T. E.

Kurtsiefer, Ch.

Ch. Kurtsiefer, T. Pfau, and J. Mlynek, Nature 386, 150 (1997).
[CrossRef]

McAlister, D. F.

M. G. Raymer, M. Beck, and D. F. McAlister, Phys. Rev. Lett. 72, 1137 (1994).
[CrossRef] [PubMed]

McNulty, I.

Mlynek, J.

Ch. Kurtsiefer, T. Pfau, and J. Mlynek, Nature 386, 150 (1997).
[CrossRef]

Nugent, K. A.

Paterson, D.

Peele, A. G.

Pfau, T.

Ch. Kurtsiefer, T. Pfau, and J. Mlynek, Nature 386, 150 (1997).
[CrossRef]

Raymer, M. G.

M. G. Raymer, M. Beck, and D. F. McAlister, Phys. Rev. Lett. 72, 1137 (1994).
[CrossRef] [PubMed]

Roberts, A.

Santarsiero, M.

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, Optik (Stuttgart) 35, 237 (1972).

Tran, C. Q.

Wolf, E.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (12)

Equations on this page are rendered with MathJax. Learn more.

B ( r , u ) = ( k 2 π ) 2 J ( r + x 2 , r x 2 ) exp ( i k u x ) d x ,
J ( r 1 , r 2 ) = ψ ( r 1 ) ψ * ( r 2 ) g ( r 1 r 2 ) ,
B Schell ( r , u ) = B ψ ( r , u u ) G ( u ) d u ,
B ψ ( r , u ) = ( k 2 π ) 2 ψ ( r + x 2 ) ψ * ( r x 2 ) exp ( i k u x ) d x ,
G ( u ) = ( k 2 π ) 2 g ( x ) exp ( i k u x ) d x .
I ( r ) z = u B ( r , u ) d u .
I ( r ) z = [ B ψ ( r , u ) d u u G ( u ) d u u B ψ ( r , u ) d u G ( u ) d u ] .
u G ( u ) d u = 0 ,
I ( r ) z = u B ψ ( r , u ) d u .
I ( r ) z = 1 k [ ψ ( r ) 2 ϕ ( r ) ] .
B Schell ( r , u ) = B ψ ( r z u , u u ) G ( u ) d u .
I Schell ( r ) = 1 z 2 I ψ , z ( r r ) G ( r z ) d r ,

Metrics