Abstract

ZnOSnO nanocomposites have been designed to enhance the band edge emission and suppress the defect emission of ZnO nanorods simultaneously. It is found that the intensity ratio between the band edge and defect emission can be improved by up to 4 orders of magnitude. The underlying mechanism is interpreted in terms of surface modification as well as carrier transfer from SnO nanoparticles to ZnO nanorods. Our approach is very useful for creating highly efficient optoelectronic devices.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Vogel, P. Hoyer, and H. Weller, J. Phys. Chem. 98, 3183 (1994).
    [CrossRef]
  2. T. Haohua and F. K. David, Int. Chem. Eng. 6, 116 (2006).
  3. N. E. Hsu, W. K. Hung, and Y. F. Chen, J. Appl. Phys. 96, 4671 (2004).
    [CrossRef]
  4. H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, and Y. F. Chen, Opt. Express 14, 2372 (2006).
    [CrossRef] [PubMed]
  5. N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, Appl. Phys. Lett. 80, 2869 (2002).
    [CrossRef]
  6. S. Koval, R. Burrial, M. G. Stachiotti, M. Castro, R. L. Mingoni, M. S. Moreno, A. Varela, and C. O. Rodriguez, Phys. Rev. B 60, 14496 (1999).
    [CrossRef]
  7. X. Yong and A. A. S. Martin, Am. Mineral 85, 543 (2000).
  8. B. X. Lin, Z. X. Fu, and Y. B. Jia, Appl. Phys. Lett. 79, 943 (2001).
    [CrossRef]
  9. T. Gao, Q. H. Li, and T. H. Wang, Chem. Mater. 17, 887 (2005).
    [CrossRef]

2006 (2)

2005 (1)

T. Gao, Q. H. Li, and T. H. Wang, Chem. Mater. 17, 887 (2005).
[CrossRef]

2004 (1)

N. E. Hsu, W. K. Hung, and Y. F. Chen, J. Appl. Phys. 96, 4671 (2004).
[CrossRef]

2002 (1)

N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, Appl. Phys. Lett. 80, 2869 (2002).
[CrossRef]

2001 (1)

B. X. Lin, Z. X. Fu, and Y. B. Jia, Appl. Phys. Lett. 79, 943 (2001).
[CrossRef]

2000 (1)

X. Yong and A. A. S. Martin, Am. Mineral 85, 543 (2000).

1999 (1)

S. Koval, R. Burrial, M. G. Stachiotti, M. Castro, R. L. Mingoni, M. S. Moreno, A. Varela, and C. O. Rodriguez, Phys. Rev. B 60, 14496 (1999).
[CrossRef]

1994 (1)

R. Vogel, P. Hoyer, and H. Weller, J. Phys. Chem. 98, 3183 (1994).
[CrossRef]

Burrial, R.

S. Koval, R. Burrial, M. G. Stachiotti, M. Castro, R. L. Mingoni, M. S. Moreno, A. Varela, and C. O. Rodriguez, Phys. Rev. B 60, 14496 (1999).
[CrossRef]

Castro, M.

S. Koval, R. Burrial, M. G. Stachiotti, M. Castro, R. L. Mingoni, M. S. Moreno, A. Varela, and C. O. Rodriguez, Phys. Rev. B 60, 14496 (1999).
[CrossRef]

Chen, Y. F.

Cheng, C. L.

Chou, Y. Y.

David, F. K.

T. Haohua and F. K. David, Int. Chem. Eng. 6, 116 (2006).

Fu, Z. X.

B. X. Lin, Z. X. Fu, and Y. B. Jia, Appl. Phys. Lett. 79, 943 (2001).
[CrossRef]

Gao, T.

T. Gao, Q. H. Li, and T. H. Wang, Chem. Mater. 17, 887 (2005).
[CrossRef]

Haneda, H.

N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, Appl. Phys. Lett. 80, 2869 (2002).
[CrossRef]

Haohua, T.

T. Haohua and F. K. David, Int. Chem. Eng. 6, 116 (2006).

Hoyer, P.

R. Vogel, P. Hoyer, and H. Weller, J. Phys. Chem. 98, 3183 (1994).
[CrossRef]

Hsu, N. E.

N. E. Hsu, W. K. Hung, and Y. F. Chen, J. Appl. Phys. 96, 4671 (2004).
[CrossRef]

Huang, L. L.

Hung, W. K.

N. E. Hsu, W. K. Hung, and Y. F. Chen, J. Appl. Phys. 96, 4671 (2004).
[CrossRef]

Ishigaki, T.

N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, Appl. Phys. Lett. 80, 2869 (2002).
[CrossRef]

Jia, Y. B.

B. X. Lin, Z. X. Fu, and Y. B. Jia, Appl. Phys. Lett. 79, 943 (2001).
[CrossRef]

Koval, S.

S. Koval, R. Burrial, M. G. Stachiotti, M. Castro, R. L. Mingoni, M. S. Moreno, A. Varela, and C. O. Rodriguez, Phys. Rev. B 60, 14496 (1999).
[CrossRef]

Li, Q. H.

T. Gao, Q. H. Li, and T. H. Wang, Chem. Mater. 17, 887 (2005).
[CrossRef]

Lin, B. X.

B. X. Lin, Z. X. Fu, and Y. B. Jia, Appl. Phys. Lett. 79, 943 (2001).
[CrossRef]

Lin, H. Y.

Martin, A. A. S.

X. Yong and A. A. S. Martin, Am. Mineral 85, 543 (2000).

Mingoni, R. L.

S. Koval, R. Burrial, M. G. Stachiotti, M. Castro, R. L. Mingoni, M. S. Moreno, A. Varela, and C. O. Rodriguez, Phys. Rev. B 60, 14496 (1999).
[CrossRef]

Moreno, M. S.

S. Koval, R. Burrial, M. G. Stachiotti, M. Castro, R. L. Mingoni, M. S. Moreno, A. Varela, and C. O. Rodriguez, Phys. Rev. B 60, 14496 (1999).
[CrossRef]

Ohashi, N.

N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, Appl. Phys. Lett. 80, 2869 (2002).
[CrossRef]

Okada, N.

N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, Appl. Phys. Lett. 80, 2869 (2002).
[CrossRef]

Rodriguez, C. O.

S. Koval, R. Burrial, M. G. Stachiotti, M. Castro, R. L. Mingoni, M. S. Moreno, A. Varela, and C. O. Rodriguez, Phys. Rev. B 60, 14496 (1999).
[CrossRef]

Sakaguchi, I.

N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, Appl. Phys. Lett. 80, 2869 (2002).
[CrossRef]

Sekiguchi, T.

N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, Appl. Phys. Lett. 80, 2869 (2002).
[CrossRef]

Stachiotti, M. G.

S. Koval, R. Burrial, M. G. Stachiotti, M. Castro, R. L. Mingoni, M. S. Moreno, A. Varela, and C. O. Rodriguez, Phys. Rev. B 60, 14496 (1999).
[CrossRef]

Varela, A.

S. Koval, R. Burrial, M. G. Stachiotti, M. Castro, R. L. Mingoni, M. S. Moreno, A. Varela, and C. O. Rodriguez, Phys. Rev. B 60, 14496 (1999).
[CrossRef]

Vogel, R.

R. Vogel, P. Hoyer, and H. Weller, J. Phys. Chem. 98, 3183 (1994).
[CrossRef]

Wang, T. H.

T. Gao, Q. H. Li, and T. H. Wang, Chem. Mater. 17, 887 (2005).
[CrossRef]

Weller, H.

R. Vogel, P. Hoyer, and H. Weller, J. Phys. Chem. 98, 3183 (1994).
[CrossRef]

Yong, X.

X. Yong and A. A. S. Martin, Am. Mineral 85, 543 (2000).

Am. Mineral (1)

X. Yong and A. A. S. Martin, Am. Mineral 85, 543 (2000).

Appl. Phys. Lett. (2)

B. X. Lin, Z. X. Fu, and Y. B. Jia, Appl. Phys. Lett. 79, 943 (2001).
[CrossRef]

N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, Appl. Phys. Lett. 80, 2869 (2002).
[CrossRef]

Chem. Mater. (1)

T. Gao, Q. H. Li, and T. H. Wang, Chem. Mater. 17, 887 (2005).
[CrossRef]

Int. Chem. Eng. (1)

T. Haohua and F. K. David, Int. Chem. Eng. 6, 116 (2006).

J. Appl. Phys. (1)

N. E. Hsu, W. K. Hung, and Y. F. Chen, J. Appl. Phys. 96, 4671 (2004).
[CrossRef]

J. Phys. Chem. (1)

R. Vogel, P. Hoyer, and H. Weller, J. Phys. Chem. 98, 3183 (1994).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

S. Koval, R. Burrial, M. G. Stachiotti, M. Castro, R. L. Mingoni, M. S. Moreno, A. Varela, and C. O. Rodriguez, Phys. Rev. B 60, 14496 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scanning electron microscopy images of (a) top-viewed and (b) tilt angle of 20° ZnO nanorods; (c) ZnO nanorods covered by SnO nanoparticles sputtered by a current of 20 mA for 450 s ; (d) ZnO nanorods without SnO nanoparticles.

Fig. 2
Fig. 2

Raman scattering spectrum of SnO nanoparticles.

Fig. 3
Fig. 3

PL spectrum of SnO nanoparticles sputtered on quartz.

Fig. 4
Fig. 4

PL spectra of ZnO nanorods with and without SnO nanoparticles. The coating of SnO nanoparticles was sputtered by a current of 20 mA for 330 s .

Fig. 5
Fig. 5

Variation of the intensity of the enhanced UV emission versus pumping wavelength.

Fig. 6
Fig. 6

Energy band alignment for the Zn O Sn O coupled system. The photoinduced carriers can transfer from SnO to ZnO, which results in enhanced UV emission and achieves a maximum when the excitation photon energy matches the bandgap of SnO.

Metrics