Abstract

We present a new type of nonlinear mirror based on the generation of a cross-polarized wave through a nonresonant electronic third-order process. It is characterized by a reflection coefficient that depends on the input intensity. Its behavior results from the interference between the nonlinearly generated cross-polarized wave and a π2 phase-retarded wave. This setup has a lot of advantages: it does not require any phase matching, it is achromatic and suitable for femtosecond pulses, linear losses are easily adjustable, and the overall behavior is predictable. The device has been experimentally tested using BaF2 and YVO4 crystals.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dahlström, Opt. Commun. 5, 157 (1972).
    [CrossRef]
  2. K. Sala, M. C. Richardson, and N. R. Isenor, IEEE J. Quantum Electron. QE-13, 915 (1977).
    [CrossRef]
  3. D. E. Spence, P. N. Kean, and W. Sibbett, Opt. Lett. 16, 42 (1991).
    [CrossRef] [PubMed]
  4. E. P. Ippen, H. A. Haus, and L. Y. Liu, J. Opt. Soc. Am. B 6, 1736 (1989).
    [CrossRef]
  5. K. A. Stankov, Appl. Phys. B 45, 191 (1988).
    [CrossRef]
  6. G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
    [CrossRef]
  7. G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segala, and V. Magni, Opt. Lett. 20, 746 (1995).
    [CrossRef] [PubMed]
  8. V. Couderc, F. Louradour, and A. Barthélémy, Opt. Commun. 166, 103 (1999).
    [CrossRef]
  9. U. Keller, G. W. 't Hooft, W. H. Knox, and J. E. Cunningham, Opt. Lett. 16, 1022 (1991).
    [CrossRef] [PubMed]
  10. F. Salin, J. Squier, and M. Piché, Opt. Lett. 16, 1674 (1991).
    [CrossRef] [PubMed]
  11. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, IEEE J. Quantum Electron. 28, 2086 (1992).
    [CrossRef]
  12. I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, Appl. Phys. B 65, 137 (1997).
    [CrossRef]
  13. Yu. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, 1998).
  14. N. Minkovski, S. Saltiel, G. Petrov, O. Albert, and J. Etchepare, Opt. Lett. 27, 2025 (2002).
    [CrossRef]
  15. N. Minkovski, G. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, J. Opt. Soc. Am. B 21, 1659 (2004).
    [CrossRef]
  16. A. Jullien, O. Albert, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, Opt. Express 14, 2760 (2006).
    [CrossRef] [PubMed]
  17. A. Jullien, O. Albert, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, J. Opt. Soc. Am. B 22, 2635 (2005).
    [CrossRef]

2006 (1)

2005 (1)

2004 (1)

2002 (1)

1999 (1)

V. Couderc, F. Louradour, and A. Barthélémy, Opt. Commun. 166, 103 (1999).
[CrossRef]

1997 (1)

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, Appl. Phys. B 65, 137 (1997).
[CrossRef]

1996 (1)

G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
[CrossRef]

1995 (1)

1992 (1)

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, IEEE J. Quantum Electron. 28, 2086 (1992).
[CrossRef]

1991 (3)

1989 (1)

1988 (1)

K. A. Stankov, Appl. Phys. B 45, 191 (1988).
[CrossRef]

1977 (1)

K. Sala, M. C. Richardson, and N. R. Isenor, IEEE J. Quantum Electron. QE-13, 915 (1977).
[CrossRef]

1972 (1)

L. Dahlström, Opt. Commun. 5, 157 (1972).
[CrossRef]

Albert, O.

Barthélémy, A.

V. Couderc, F. Louradour, and A. Barthélémy, Opt. Commun. 166, 103 (1999).
[CrossRef]

Cerullo, G.

Chériaux, G.

Couderc, V.

V. Couderc, F. Louradour, and A. Barthélémy, Opt. Commun. 166, 103 (1999).
[CrossRef]

Cunningham, J. E.

Dahlström, L.

L. Dahlström, Opt. Commun. 5, 157 (1972).
[CrossRef]

De Silvestri, S.

Etchepare, J.

Fujimoto, J. G.

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, IEEE J. Quantum Electron. 28, 2086 (1992).
[CrossRef]

Hagan, D. J.

G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
[CrossRef]

Haus, H. A.

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, IEEE J. Quantum Electron. 28, 2086 (1992).
[CrossRef]

E. P. Ippen, H. A. Haus, and L. Y. Liu, J. Opt. Soc. Am. B 6, 1736 (1989).
[CrossRef]

Ippen, E. P.

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, IEEE J. Quantum Electron. 28, 2086 (1992).
[CrossRef]

E. P. Ippen, H. A. Haus, and L. Y. Liu, J. Opt. Soc. Am. B 6, 1736 (1989).
[CrossRef]

Isenor, N. R.

K. Sala, M. C. Richardson, and N. R. Isenor, IEEE J. Quantum Electron. QE-13, 915 (1977).
[CrossRef]

Jullien, A.

Jung, I. D.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, Appl. Phys. B 65, 137 (1997).
[CrossRef]

Kärtner, F. X.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, Appl. Phys. B 65, 137 (1997).
[CrossRef]

Kean, P. N.

Keller, U.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, Appl. Phys. B 65, 137 (1997).
[CrossRef]

U. Keller, G. W. 't Hooft, W. H. Knox, and J. E. Cunningham, Opt. Lett. 16, 1022 (1991).
[CrossRef] [PubMed]

Knox, W. H.

Kourtev, S.

Liu, L. Y.

Louradour, F.

V. Couderc, F. Louradour, and A. Barthélémy, Opt. Commun. 166, 103 (1999).
[CrossRef]

Magni, V.

Matuschek, N.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, Appl. Phys. B 65, 137 (1997).
[CrossRef]

Minkovski, N.

Monguzzi, A.

Morier-Genoud, F.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, Appl. Phys. B 65, 137 (1997).
[CrossRef]

Petrov, G.

Piché, M.

Richardson, M. C.

K. Sala, M. C. Richardson, and N. R. Isenor, IEEE J. Quantum Electron. QE-13, 915 (1977).
[CrossRef]

Sala, K.

K. Sala, M. C. Richardson, and N. R. Isenor, IEEE J. Quantum Electron. QE-13, 915 (1977).
[CrossRef]

Salin, F.

Saltiel, S.

Saltiel, S. M.

Scheuer, V.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, Appl. Phys. B 65, 137 (1997).
[CrossRef]

Segala, D.

Shi, Z.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, Appl. Phys. B 65, 137 (1997).
[CrossRef]

Sibbett, W.

Spence, D. E.

Squier, J.

Stankov, K. A.

K. A. Stankov, Appl. Phys. B 45, 191 (1988).
[CrossRef]

Stegeman, G. I.

G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
[CrossRef]

Sutter, D. H.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, Appl. Phys. B 65, 137 (1997).
[CrossRef]

Svirko, Yu. P.

Yu. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, 1998).

't Hooft, G. W.

Tilsch, M.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, Appl. Phys. B 65, 137 (1997).
[CrossRef]

Torner, L.

G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
[CrossRef]

Tschudi, T.

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, Appl. Phys. B 65, 137 (1997).
[CrossRef]

Zheludev, N. I.

Yu. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, 1998).

Appl. Phys. B (2)

K. A. Stankov, Appl. Phys. B 45, 191 (1988).
[CrossRef]

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, Z. Shi, V. Scheuer, M. Tilsch, T. Tschudi, and U. Keller, Appl. Phys. B 65, 137 (1997).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, IEEE J. Quantum Electron. 28, 2086 (1992).
[CrossRef]

K. Sala, M. C. Richardson, and N. R. Isenor, IEEE J. Quantum Electron. QE-13, 915 (1977).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Commun. (2)

L. Dahlström, Opt. Commun. 5, 157 (1972).
[CrossRef]

V. Couderc, F. Louradour, and A. Barthélémy, Opt. Commun. 166, 103 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Opt. Quantum Electron. (1)

G. I. Stegeman, D. J. Hagan, and L. Torner, Opt. Quantum Electron. 28, 1691 (1996).
[CrossRef]

Other (1)

Yu. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the NLM–XPW experiment. D o , input beam; D, reflected beam; C, leakage beam (losses); NLC, nonlinear crystal; M, maximum reflectivity concave mirror; QWP, quarter-wave plate. The QWP and the NLC can both be rotated, respectively, by α and β angles around the propagation axis. (b) Top curves: intensity reflection coefficient of the NLM–XPW. Bottom curves: intensity leakage coefficient. The angle β = 22.5 ° + α .

Fig. 2
Fig. 2

Measured energy leakage coefficient (points) of NLM–XPW with BaF 2 and theoretical predictions (curves) obtained assuming Gauss temporal and spatial shape. The leakage coefficient is normalized to the linear (low-intensity) losses. The angle β = 22.5 ° + α . The fit is obtained by the rescaling of S = γ o D o 2 L . For this fit, the 1 μ J pulse energy corresponds to S = 0.175 . The inset shows the recalculated RC for α = 11 ° .

Fig. 3
Fig. 3

Measured energy leakage coefficient (points) of the NLM–XPW with BaF 2 normalized to the linear losses as a function of angle β (with α = 6 ° ). The curves are the theoretical predictions that take into account the Gaussian spatial and the temporal shape of the beam.

Metrics