Abstract

Resolution of 90nm was achieved with a research microscope simply by replacing the standard bright-field condenser with a homebuilt illumination system with a cardioid annular condenser. Diffraction gratings with 100nm width lines as well as less than 100nm size features of different-shaped objects were clearly visible on a calibrated microscope test slide. The resolution increase results from a known narrower diffraction pattern in coherent illumination for the annular aperture compared with the circular aperture. This explanation is supported by an excellent accord of calculated and measured diffraction patterns for a 50nm radius disk.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell, Nat. Biotechnol. 21, 1347 (2003).
    [CrossRef] [PubMed]
  2. Y. Garini, B. J. Vermolen, and I. T. Young, Curr. Opin. Biotechnol. 16, 3 (2005).
    [CrossRef] [PubMed]
  3. V. Westphal and S. W. Hell, Phys. Rev. Lett. 94, 143903 (2005).
    [CrossRef] [PubMed]
  4. M. G. L. Gustafsson, Proc. Natl. Acad. Sci. U.S.A. 102, 13081 (2005).
    [CrossRef] [PubMed]
  5. M. Schrader, M. Kozubek, S. W. Hell, and T. Wilson, Opt. Lett. 22, 436 (1997).
    [CrossRef] [PubMed]
  6. L. C. Martin, An Introduction to Applied Optics, Vol. 2 (Pitman & Sons, 1932).
  7. T. M. Richardson, Proc. R. Microsc. Soc. 33, 3 (1998).
  8. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  9. L. C. Martin, The Theory of the Microscope (Elsevier, 1966).
  10. H. H. Hopkins, Sci. J. R. College 20, 100 (1949).

2005

Y. Garini, B. J. Vermolen, and I. T. Young, Curr. Opin. Biotechnol. 16, 3 (2005).
[CrossRef] [PubMed]

V. Westphal and S. W. Hell, Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef] [PubMed]

M. G. L. Gustafsson, Proc. Natl. Acad. Sci. U.S.A. 102, 13081 (2005).
[CrossRef] [PubMed]

2003

S. W. Hell, Nat. Biotechnol. 21, 1347 (2003).
[CrossRef] [PubMed]

1998

T. M. Richardson, Proc. R. Microsc. Soc. 33, 3 (1998).

1997

1949

H. H. Hopkins, Sci. J. R. College 20, 100 (1949).

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Garini, Y.

Y. Garini, B. J. Vermolen, and I. T. Young, Curr. Opin. Biotechnol. 16, 3 (2005).
[CrossRef] [PubMed]

Gustafsson, M. G. L.

M. G. L. Gustafsson, Proc. Natl. Acad. Sci. U.S.A. 102, 13081 (2005).
[CrossRef] [PubMed]

Hell, S. W.

V. Westphal and S. W. Hell, Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef] [PubMed]

S. W. Hell, Nat. Biotechnol. 21, 1347 (2003).
[CrossRef] [PubMed]

M. Schrader, M. Kozubek, S. W. Hell, and T. Wilson, Opt. Lett. 22, 436 (1997).
[CrossRef] [PubMed]

Hopkins, H. H.

H. H. Hopkins, Sci. J. R. College 20, 100 (1949).

Kozubek, M.

Martin, L. C.

L. C. Martin, The Theory of the Microscope (Elsevier, 1966).

L. C. Martin, An Introduction to Applied Optics, Vol. 2 (Pitman & Sons, 1932).

Richardson, T. M.

T. M. Richardson, Proc. R. Microsc. Soc. 33, 3 (1998).

Schrader, M.

Vermolen, B. J.

Y. Garini, B. J. Vermolen, and I. T. Young, Curr. Opin. Biotechnol. 16, 3 (2005).
[CrossRef] [PubMed]

Westphal, V.

V. Westphal and S. W. Hell, Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef] [PubMed]

Wilson, T.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

Young, I. T.

Y. Garini, B. J. Vermolen, and I. T. Young, Curr. Opin. Biotechnol. 16, 3 (2005).
[CrossRef] [PubMed]

Curr. Opin. Biotechnol.

Y. Garini, B. J. Vermolen, and I. T. Young, Curr. Opin. Biotechnol. 16, 3 (2005).
[CrossRef] [PubMed]

Nat. Biotechnol.

S. W. Hell, Nat. Biotechnol. 21, 1347 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

V. Westphal and S. W. Hell, Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

M. G. L. Gustafsson, Proc. Natl. Acad. Sci. U.S.A. 102, 13081 (2005).
[CrossRef] [PubMed]

Proc. R. Microsc. Soc.

T. M. Richardson, Proc. R. Microsc. Soc. 33, 3 (1998).

Sci. J. R. College

H. H. Hopkins, Sci. J. R. College 20, 100 (1949).

Other

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).

L. C. Martin, The Theory of the Microscope (Elsevier, 1966).

L. C. Martin, An Introduction to Applied Optics, Vol. 2 (Pitman & Sons, 1932).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cardioid annular condenser (A-condenser). The illumination regime is installed by the iris opening: a, dark-field; b, bright field. 1, condenser; 2, sample; 3, objective; 4, annular diaphragm; 5, iris.

Fig. 2
Fig. 2

Images of Richardson slide patterns: a, b, scanning electron microscope images; c–h, optical images obtained with the A-condenser. c–f, 100, 99, 90, and 81 nm imaged with 10 nm band filters of 500, 500, 450, and 405 nm , respectively; g, star pattern with 36 sectors, with a 546 nm filter [at the smallest central circle ( r = 650 nm ) the arcs are 110 nm ]; h, various shape patterns, with a 546 nm filter. Top row of h, maple leaf patterns with stem widths of (left) 102 and (right) 71 nm ; middle and bottom rows, sharp and round-edged shapes; the scale bar of 4 μ m is for h only.

Fig. 3
Fig. 3

a, Scattering diagram of Eq. (4) for m = 2 (outer), m = 6 (middle), and m = 12 (inner). b, Polar angle distribution of the scattered light amplitude over the objective lens aperture in the dark-field regime of the A-condenser.

Fig. 4
Fig. 4

Images and intensity plots of 50 nm radius opaque disk. Bright-field images: a, cardioid condenser, N.A. = 1.4 ; b, Olympus condenser, N.A. = 1.4 . Dark-field images: cardiod condenser, c, N.A. = 1.1 ; d, N.A. = 0.7 . Dots, experiment; solid curves, theory.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

U 1 ( x 1 , y 1 ) = U 0 ( x 0 , y 0 ) P ( x 1 x 0 , y 1 y 0 ) d x 0 d y 0 .
U 1 ( ρ 1 ) = k 0 N r a ε a a J 1 ( k 0 N r ρ a ) J 0 ( k 0 N ρ 1 ρ a ) d ρ .
U d ( ρ 1 ) = U U 1 ( ρ 1 ) .
u 0 ( ξ ) = cos m ξ ,

Metrics