Abstract

A novel scheme to achieve broadband cascaded third-harmonic generation by use of two-dimensional quasi-phase-matching gratings is proposed. Intrinsic group-velocity mismatch is compensated by the pulse front tilt in noncollinear interaction geometry. The presented scheme enables broadband third-harmonic generation in a single device of long interaction length, which reduces the operation intensity dramatically.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).
    [CrossRef]
  2. C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, Opt. Lett. 26, 899 (2001).
    [CrossRef]
  3. V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
    [CrossRef]
  4. S. Saltiel and Y. S. Kivshar, Opt. Lett. 25, 1204 (2000).
    [CrossRef]
  5. N. G. R. Broderick, R. T. Bratfalean, T. M. Monro, D. J. Richardson, and C. M. de Sterke, J. Opt. Soc. Am. B 19, 2263 (2002).
    [CrossRef]
  6. A. H. Norton and C. M. de Sterke, Opt. Lett. 28, 188 (2003).
    [CrossRef] [PubMed]
  7. A. H. Norton and C. M. de Sterke, Opt. Express 11, 1008 (2003).
    [CrossRef] [PubMed]
  8. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, Opt. Lett. 22, 1341 (1997).
    [CrossRef]
  9. G. Imeshev, A. Galvanauskas, D. Harter, M. A. Arbore, M. Proctor, and M. M. Fejer, Opt. Lett. 23, 864 (1998).
    [CrossRef]
  10. S. Ashihara, T. Shimura, and K. Kuroda, J. Opt. Soc. Am. B 20, 853 (2003).
    [CrossRef]
  11. N. Fujioka, S. Ashihara, H. Ono, T. Shimura, and K. Kuroda, J. Opt. Soc. Am. B 22, 1283 (2005).
    [CrossRef]
  12. A. M. Schober, M. Charbonneau-Lefort, and M. M. Fejer, J. Opt. Soc. Am. B 22, 1699 (2005).
    [CrossRef]
  13. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1996).

2005 (2)

2003 (3)

2002 (1)

2001 (1)

2000 (1)

1998 (2)

1997 (2)

Arbore, M. A.

Ashihara, S.

Berger, V.

V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
[CrossRef]

Bratfalean, R. T.

Broderick, N. G. R.

Charbonneau-Lefort, M.

Chou, M. H.

de Sterke, C. M.

Diels, J. C.

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1996).

Fejer, M. M.

Fujioka, N.

Galvanauskas, A.

Harter, D.

Imeshev, G.

Kivshar, Y. S.

Kuroda, K.

Ming, N. B.

Monro, T. M.

Norton, A. H.

Ono, H.

Proctor, M.

Richardson, D. J.

Rudolph, W.

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1996).

Saltiel, S.

Schober, A. M.

Shimura, T.

Wang, H. T.

Wei, H.

Zhang, C.

Zhu, S. N.

Zhu, Y. Y.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Wave-vector diagram of noncollinear QPM conditions of cascaded THG. (b) Schematic of broadband cascaded THG in 2D nonlinear periodic structure.

Fig. 2
Fig. 2

Broadband cascaded THG conditions in 2D periodically poled Li Nb O 3 as a function of R = Λ S Λ S 0 : (a) QPM grating periods, (b) QPM grating and spatial walk-off angles, and (c) pulse-front tilt angle and dispersion length.

Fig. 3
Fig. 3

(a) Two-dimensional-poling pattern obtained by AND operation of two gratings, K S and K T . (b) Optimal poling pattern obtained by XOR operation of two gratings, ( K S + K T ) 2 and ( K S + K T ) 2 .

Fig. 4
Fig. 4

Numerical results of (a) SH and TH temporal pulse shapes with XOR pattern, R = Λ S Λ S 0 = 0.6 as typical condition. (b) SHG and THG efficiency η 2 ω and η 3 ω as functions of R = Λ S Λ S 0 . Solid and dashed curves correspond to calculated results of XOR and AND patterns, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

cos ϕ 2 = 4 k 1 2 + K 2 2 k 2 2 4 k 1 K 2 ,
cos ϕ 3 = 9 k 1 2 + K 3 2 k 3 2 6 k 1 K 3 .
d ϕ j d λ 1 = 4 cos θ 2 d k 1 d λ 1 d k 2 d λ 2 4 k 1 sin θ 2 = 9 cos θ 3 d k 1 d λ 1 d k 3 d λ 3 9 k 1 sin θ 3 .

Metrics