Abstract

A novel optical fiber fabrication technique was developed by converting the symmetry of the silica substrate into the germanosilicate ring core to efficiently introduce geometric birefringence in an elliptical hollow optical fiber. Due to high ellipticity in the hollow ring core, the fiber provides an extremely high group birefringence of 2.35×103 at 1550nm. Single-mode single-polarization guidance was also experimentally confirmed, with a bandwidth of 35nm. The generic adiabatic mode conversion capability in the taper also provided a stable fusion splice to conventional single-mode fiber with low loss and high tensile strength.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
    [CrossRef]
  2. R. B. Dyott, Elliptical Fiber Waveguides (Artech House, 1995).
  3. I.-K. Hwang, Y.-H. Lee, K. Oh, and D. N. Payne, Opt. Express 12, 1916 (2004).
    [CrossRef] [PubMed]
  4. K. Oh, S. Choi, Y. Jung, and J. W. Lee, J. Lightwave Technol. 23, 524 (2005).
    [CrossRef]
  5. S. B. Poole and J. D. Love, Electron. Lett. 27, 1559 (1991).
    [CrossRef]
  6. D. L. Franzen, J. Lightwave Technol. 3, 128 (1985).
    [CrossRef]
  7. D. A. Nolan, G. E. Berkey, M.-J. Li, X. Chen, W. A. Wood, and L. A. Zenteno, Opt. Lett. 29, 1855 (2004).
    [CrossRef] [PubMed]
  8. M.-J. Li, Xin Chen, D. A. Nolan, and L. A. Zenteno, J. Lightwave Technol. 23, 3454 (2005).
    [CrossRef]
  9. X. Chen, M.-J. Li, N. Venkataraman, and K. W. Koch, Opt. Express 12, 3888 (2004).
    [CrossRef] [PubMed]

2005 (2)

2004 (3)

1991 (1)

S. B. Poole and J. D. Love, Electron. Lett. 27, 1559 (1991).
[CrossRef]

1986 (1)

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[CrossRef]

1985 (1)

D. L. Franzen, J. Lightwave Technol. 3, 128 (1985).
[CrossRef]

Berkey, G. E.

Chen, X.

Chen, Xin

Choi, S.

Dyott, R. B.

R. B. Dyott, Elliptical Fiber Waveguides (Artech House, 1995).

Franzen, D. L.

D. L. Franzen, J. Lightwave Technol. 3, 128 (1985).
[CrossRef]

Hwang, I.-K.

Jung, Y.

Koch, K. W.

Lee, J. W.

Lee, Y.-H.

Li, M.-J.

Love, J. D.

S. B. Poole and J. D. Love, Electron. Lett. 27, 1559 (1991).
[CrossRef]

Noda, J.

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[CrossRef]

Nolan, D. A.

Oh, K.

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[CrossRef]

Payne, D. N.

Poole, S. B.

S. B. Poole and J. D. Love, Electron. Lett. 27, 1559 (1991).
[CrossRef]

Sasaki, Y.

J. Noda, K. Okamoto, and Y. Sasaki, J. Lightwave Technol. 4, 1071 (1986).
[CrossRef]

Venkataraman, N.

Wood, W. A.

Zenteno, L. A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Structure of the EHOF with the core consisting of an elliptical air hole. (b) Schematic diagram of the EHOF preform fabrication process.

Fig. 2
Fig. 2

Photographs of fabricated fibers for (a) high drawing temperature with a fully collapsed solid core, (b) lower drawing temperature with an open elliptical air hole and a ring core. Insets show near-field patterns of guided mode at 1550 nm .

Fig. 3
Fig. 3

(a) Transmission spectra of 2 m of the EHOF for different elliptical air-hole sizes for an unpolarized white-light source. (b) Transmission spectra of 10 m of the EHOF with an 8 μ m hole for two polarization states.

Fig. 4
Fig. 4

(a) Spectral polarization oscillations obtained by a crossed polarizer technique for fiber length l = 260 mm . (b) Group birefringence versus wavelength as a function of elliptical air-hole size.

Metrics