Abstract

We report the results of detailed measurements on the Brillouin frequency shift (BFS), gain bandwidth, and gain coefficients of several small-core holey optical fibers (HFs) of both uniform and axially varying structural characteristics and compare these with measurements on more conventional fibers. Our measurements show that the BFS of HFs is first-order proportional to the modal index for light propagating along the fiber and is thus extremely sensitive to its precise structural parameters. Our results highlight the possibility of using distributed Brillouin scattering measurements to perform nondestructive structural characterization of HFs, and the possibility of producing Brillouin-suppressed HFs using controlled structural variation along the fiber length.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, Science 299, 358 (2003).
    [CrossRef] [PubMed]
  2. J. H. Lee, T. Tanemura, K. Kikuchi, T. Nagashima, T. Hasegawa, S. Ohara, and N. Sugimoto, Opt. Lett. 30, 1698 (2005).
    [CrossRef] [PubMed]
  3. J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, Opt. Lett. 27, 927 (2002).
    [CrossRef]
  4. L. Zou, X. Bao, and L. Chen, Opt. Lett. 28, 2022 (2003).
    [CrossRef] [PubMed]
  5. M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
    [CrossRef]
  6. K. Hotate and T. Hasegawa, IEICE Trans. Electron. 83-C, 405 (2000).
  7. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, Opt. Lett. 21, 1966 (1996).
    [CrossRef] [PubMed]
  8. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  9. F. Poletti, K. Furusawa, Z. Yussoff, P. Petropoulos, N. G. R. Broderick, T. M. Monro, and D. J. Richardson, in Optical Fiber Communication (OFC) (Optical Society of America, 2006), paper OWI10.

2005 (1)

2003 (2)

2002 (1)

2000 (1)

K. Hotate and T. Hasegawa, IEICE Trans. Electron. 83-C, 405 (2000).

1997 (1)

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

1996 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Bao, X.

Belardi, W.

Boskovic, A.

Broderick, N. G. R.

F. Poletti, K. Furusawa, Z. Yussoff, P. Petropoulos, N. G. R. Broderick, T. M. Monro, and D. J. Richardson, in Optical Fiber Communication (OFC) (Optical Society of America, 2006), paper OWI10.

Chen, L.

Chernikov, S. V.

Furusawa, K.

F. Poletti, K. Furusawa, Z. Yussoff, P. Petropoulos, N. G. R. Broderick, T. M. Monro, and D. J. Richardson, in Optical Fiber Communication (OFC) (Optical Society of America, 2006), paper OWI10.

Gruner-Nielsen, L.

Hasegawa, T.

Hotate, K.

K. Hotate and T. Hasegawa, IEICE Trans. Electron. 83-C, 405 (2000).

Ibsen, M.

Kikuchi, K.

Lee, J. H.

Levring, O. A.

Monro, T. M.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, Opt. Lett. 27, 927 (2002).
[CrossRef]

F. Poletti, K. Furusawa, Z. Yussoff, P. Petropoulos, N. G. R. Broderick, T. M. Monro, and D. J. Richardson, in Optical Fiber Communication (OFC) (Optical Society of America, 2006), paper OWI10.

Nagashima, T.

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Ohara, S.

Petropoulos, P.

F. Poletti, K. Furusawa, Z. Yussoff, P. Petropoulos, N. G. R. Broderick, T. M. Monro, and D. J. Richardson, in Optical Fiber Communication (OFC) (Optical Society of America, 2006), paper OWI10.

Poletti, F.

F. Poletti, K. Furusawa, Z. Yussoff, P. Petropoulos, N. G. R. Broderick, T. M. Monro, and D. J. Richardson, in Optical Fiber Communication (OFC) (Optical Society of America, 2006), paper OWI10.

Richardson, D. J.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, Opt. Lett. 27, 927 (2002).
[CrossRef]

F. Poletti, K. Furusawa, Z. Yussoff, P. Petropoulos, N. G. R. Broderick, T. M. Monro, and D. J. Richardson, in Optical Fiber Communication (OFC) (Optical Society of America, 2006), paper OWI10.

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Russell, P. St. J.

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

Sugimoto, N.

Tanemura, T.

Taylor, J. R.

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Yusoff, Z.

Yussoff, Z.

F. Poletti, K. Furusawa, Z. Yussoff, P. Petropoulos, N. G. R. Broderick, T. M. Monro, and D. J. Richardson, in Optical Fiber Communication (OFC) (Optical Society of America, 2006), paper OWI10.

Zou, L.

IEICE Trans. Electron. (1)

K. Hotate and T. Hasegawa, IEICE Trans. Electron. 83-C, 405 (2000).

J. Lightwave Technol. (1)

M. Nikles, L. Thevenaz, and P. A. Robert, J. Lightwave Technol. 15, 1842 (1997).
[CrossRef]

Opt. Lett. (4)

Science (1)

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

F. Poletti, K. Furusawa, Z. Yussoff, P. Petropoulos, N. G. R. Broderick, T. M. Monro, and D. J. Richardson, in Optical Fiber Communication (OFC) (Optical Society of America, 2006), paper OWI10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup. LD, laser diode; EOM, electro-optic modulator; FUT, fiber under test; PM, Powermeter. Bottom left inset, probe spectra after the EOM (top) and FBG (bottom). Bottom right inset, scanning electron micrograph image of the FUT.

Fig. 2
Fig. 2

Normalized BGS spectra for the fibers listed in Table 1.

Fig. 3
Fig. 3

(a) Variation in the HF structural parameters along the fiber length and a scanning electron micrograph of the fiber structure, and (b) the correlation between the measured Brillouin frequency and modal index calculated from the numerical model along the fiber length.

Tables (1)

Tables Icon

Table 1 Summary of the Experimental Results

Metrics