Abstract

Single-beam coherent anti-Stokes Raman-scattering (CARS) microspectroscopy achieves a complete CARS scheme with a femtosecond laser. Here, we introduce heterodyne detection in a simple experimental extension: the optical fields driving the CARS process and the local oscillator used for heterodyning are derived from a single beam of ultrashort laser pulses by pulse shaping. The heterodyne signal is amplified by more than 3 orders of magnitude and is linearly dependent on the concentration of Raman scatterers. This dramatically increases the sensitivity of chemically selective detection at microscopic resolution while maintaining the simplicity of the single-beam setup.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
    [CrossRef]
  2. A. Volkmer, J. Phys. D 38, R59 (2005).
    [CrossRef]
  3. M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy, 2nd ed. (Academic, 1988).
  4. X. L. Nan, J. X. Cheng, and X. S. Xie, J. Lipid Res. 44, 2202 (2003).
    [CrossRef] [PubMed]
  5. C. L. Evans, E. O. Potma, and X. S. N. Xie, Opt. Lett. 29, 2923 (2004).
    [CrossRef]
  6. D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, Appl. Phys. Lett. 85, 5787 (2004).
    [CrossRef]
  7. M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, Appl. Phys. B 81, 875 (2005).
    [CrossRef]
  8. E. O. Potma, C. L. Evans, and X. S. Xie, Opt. Lett. 31, 241 (2006).
    [CrossRef] [PubMed]
  9. T. W. Kee, H. Zhao, and M. T. Cicerone, Opt. Express 14, 3631 (2006).
    [CrossRef] [PubMed]
  10. N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
    [CrossRef] [PubMed]
  11. S. H. Lim, A. G. Caster, and S. R. Leone, Phys. Rev. A 72, 041803 (2005).
    [CrossRef]
  12. B. von Vacano, W. Wohlleben, and M. Motzkus, J. Raman Spectrosc. 37, 404 (2006).
    [CrossRef]
  13. N. Dudovich, D. Oron, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003).
    [CrossRef]
  14. T. Hornung, J. C. Vaughan, T. Feurer, and K. A. Nelson, Opt. Lett. 29, 2052 (2004).
    [CrossRef] [PubMed]
  15. D. Zeidler, S. Frey, K. L. Kompa, and M. Motzkus, Phys. Rev. A 64, 023420 (2001).
    [CrossRef]
  16. B. von Vacano, W. Wohlleben, and M. Motzkus, Opt. Lett. 31, 413 (2006).
    [CrossRef] [PubMed]

2006

2005

S. H. Lim, A. G. Caster, and S. R. Leone, Phys. Rev. A 72, 041803 (2005).
[CrossRef]

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, Appl. Phys. B 81, 875 (2005).
[CrossRef]

A. Volkmer, J. Phys. D 38, R59 (2005).
[CrossRef]

2004

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, Appl. Phys. Lett. 85, 5787 (2004).
[CrossRef]

T. Hornung, J. C. Vaughan, T. Feurer, and K. A. Nelson, Opt. Lett. 29, 2052 (2004).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, and X. S. N. Xie, Opt. Lett. 29, 2923 (2004).
[CrossRef]

2003

X. L. Nan, J. X. Cheng, and X. S. Xie, J. Lipid Res. 44, 2202 (2003).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003).
[CrossRef]

2002

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

2001

D. Zeidler, S. Frey, K. L. Kompa, and M. Motzkus, Phys. Rev. A 64, 023420 (2001).
[CrossRef]

Baum, P.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, Appl. Phys. B 81, 875 (2005).
[CrossRef]

Bodermann, B.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, Appl. Phys. B 81, 875 (2005).
[CrossRef]

Boppart, S. A.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, Appl. Phys. Lett. 85, 5787 (2004).
[CrossRef]

Bredfeldt, J. S.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, Appl. Phys. Lett. 85, 5787 (2004).
[CrossRef]

Caster, A. G.

S. H. Lim, A. G. Caster, and S. R. Leone, Phys. Rev. A 72, 041803 (2005).
[CrossRef]

Cheng, J. X.

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

X. L. Nan, J. X. Cheng, and X. S. Xie, J. Lipid Res. 44, 2202 (2003).
[CrossRef] [PubMed]

Cicerone, M. T.

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

Evans, C. L.

Feurer, T.

Frey, S.

D. Zeidler, S. Frey, K. L. Kompa, and M. Motzkus, Phys. Rev. A 64, 023420 (2001).
[CrossRef]

Greve, M.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, Appl. Phys. B 81, 875 (2005).
[CrossRef]

Hornung, T.

Kano, S. S.

M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy, 2nd ed. (Academic, 1988).

Kee, T. W.

Kompa, K. L.

D. Zeidler, S. Frey, K. L. Kompa, and M. Motzkus, Phys. Rev. A 64, 023420 (2001).
[CrossRef]

Leone, S. R.

S. H. Lim, A. G. Caster, and S. R. Leone, Phys. Rev. A 72, 041803 (2005).
[CrossRef]

Levenson, M. D.

M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy, 2nd ed. (Academic, 1988).

Lim, S. H.

S. H. Lim, A. G. Caster, and S. R. Leone, Phys. Rev. A 72, 041803 (2005).
[CrossRef]

Marks, D. L.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, Appl. Phys. Lett. 85, 5787 (2004).
[CrossRef]

Motzkus, M.

B. von Vacano, W. Wohlleben, and M. Motzkus, J. Raman Spectrosc. 37, 404 (2006).
[CrossRef]

B. von Vacano, W. Wohlleben, and M. Motzkus, Opt. Lett. 31, 413 (2006).
[CrossRef] [PubMed]

D. Zeidler, S. Frey, K. L. Kompa, and M. Motzkus, Phys. Rev. A 64, 023420 (2001).
[CrossRef]

Nan, X. L.

X. L. Nan, J. X. Cheng, and X. S. Xie, J. Lipid Res. 44, 2202 (2003).
[CrossRef] [PubMed]

Nelson, K. A.

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

Potma, E. O.

Riedle, E.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, Appl. Phys. B 81, 875 (2005).
[CrossRef]

Silberberg, Y.

N. Dudovich, D. Oron, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

Telle, H. R.

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, Appl. Phys. B 81, 875 (2005).
[CrossRef]

Vaughan, J. C.

Vinegoni, C.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, Appl. Phys. Lett. 85, 5787 (2004).
[CrossRef]

Volkmer, A.

A. Volkmer, J. Phys. D 38, R59 (2005).
[CrossRef]

von Vacano, B.

B. von Vacano, W. Wohlleben, and M. Motzkus, J. Raman Spectrosc. 37, 404 (2006).
[CrossRef]

B. von Vacano, W. Wohlleben, and M. Motzkus, Opt. Lett. 31, 413 (2006).
[CrossRef] [PubMed]

Wohlleben, W.

B. von Vacano, W. Wohlleben, and M. Motzkus, Opt. Lett. 31, 413 (2006).
[CrossRef] [PubMed]

B. von Vacano, W. Wohlleben, and M. Motzkus, J. Raman Spectrosc. 37, 404 (2006).
[CrossRef]

Xie, X. S.

E. O. Potma, C. L. Evans, and X. S. Xie, Opt. Lett. 31, 241 (2006).
[CrossRef] [PubMed]

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

X. L. Nan, J. X. Cheng, and X. S. Xie, J. Lipid Res. 44, 2202 (2003).
[CrossRef] [PubMed]

Xie, X. S. N.

Zeidler, D.

D. Zeidler, S. Frey, K. L. Kompa, and M. Motzkus, Phys. Rev. A 64, 023420 (2001).
[CrossRef]

Zhao, H.

Appl. Phys. B

M. Greve, B. Bodermann, H. R. Telle, P. Baum, and E. Riedle, Appl. Phys. B 81, 875 (2005).
[CrossRef]

Appl. Phys. Lett.

D. L. Marks, C. Vinegoni, J. S. Bredfeldt, and S. A. Boppart, Appl. Phys. Lett. 85, 5787 (2004).
[CrossRef]

J. Chem. Phys.

N. Dudovich, D. Oron, and Y. Silberberg, J. Chem. Phys. 118, 9208 (2003).
[CrossRef]

J. Lipid Res.

X. L. Nan, J. X. Cheng, and X. S. Xie, J. Lipid Res. 44, 2202 (2003).
[CrossRef] [PubMed]

J. Phys. Chem. B

J. X. Cheng and X. S. Xie, J. Phys. Chem. B 108, 827 (2004).
[CrossRef]

J. Phys. D

A. Volkmer, J. Phys. D 38, R59 (2005).
[CrossRef]

J. Raman Spectrosc.

B. von Vacano, W. Wohlleben, and M. Motzkus, J. Raman Spectrosc. 37, 404 (2006).
[CrossRef]

Nature

N. Dudovich, D. Oron, and Y. Silberberg, Nature 418, 512 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. A

S. H. Lim, A. G. Caster, and S. R. Leone, Phys. Rev. A 72, 041803 (2005).
[CrossRef]

D. Zeidler, S. Frey, K. L. Kompa, and M. Motzkus, Phys. Rev. A 64, 023420 (2001).
[CrossRef]

Other

M. D. Levenson and S. S. Kano, Introduction to Nonlinear Laser Spectroscopy, 2nd ed. (Academic, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup and schematic spectra along the beam path (I, II, and III). Excitation pulses (see I) are sent into a 4 f pulse shaper ( f = 300 mm ; G1, G2, gratings, 1800 grooves mm ; SLM, spatial light modulator), where the blue part is attenuated (ND, neutral-density filter) and the red part chopped (CH, mechanical chopper) (see II). They are focused into the sample and recollimated (MO1, MO2, microscope objectives), spectrally filtered (IF, interference bandpass filter) (see III) and detected.

Fig. 2
Fig. 2

(a) Dependence of heterodyne signal S ( Het ) on LO phase Δ φ . Measured data shown as open circles, cosine fit as gray solid curve. (b) Intensity dependence of S ( Het ) , data points for different values of I LO are shown as open circles, a linear fit as gray solid line.

Fig. 3
Fig. 3

(a) τ m scans of CHBr 3 at molar fractions of 1 (gray solid curve) and 0.06 (black solid curve). The black curve is magnified by a factor of 2, and the gray curve is offset for clarity. (b) Fourier transform of these τ m scans. Again, the black curve for x ( CHBr 3 ) = 0.06 is magnified by a factor of 2. (c) The relative amplitudes of the resonant CARS signal obtained from τ m scans plotted versus x ( CHBr 3 ) (open circles). A linear fit through the origin is also shown (gray solid line). Arrows indicate the data points corresponding to the traces in (a) and (b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E CARS ( ω ) N 0 d Ω 0 d ω χ CARS ( 3 ) E ( ω Ω ) E * ( ω ) E ( ω + Ω ) .

Metrics