Abstract

A simple explanation of the observed 3dB advantage of differential phase-shift keying (DPSK) balanced detection over the intensity-modulated directly detected (IM–DD) type detection that can be easily used for system engineering purposes is presented. A Gaussian approximation is used to describe the tails of the detected noisy random signals leading to an analytical explanation of the observed 3dB advantage of DPSK balanced detection over the IM–DD type detection.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Linke and A. H. Gnauck, J. Lightwave Technol. 6, 1750 (1988).
    [CrossRef]
  2. D. Marcuse, J. Lightwave Technol. 8, 1816 (1990).
    [CrossRef]
  3. P. J. Winzer, S. Chandrasekhar, and H. Kim, IEEE Photon. Technol. Lett. 15, 840 (2003).
    [CrossRef]
  4. X. Zhang, G. Zhang, C. Xie, and L. Wang, Opt. Lett. 29, 337 (2004).
    [CrossRef] [PubMed]
  5. G. Bosco and P. Poggiolini, IEEE Photon. Technol. Lett. 16, 665 (2004).
    [CrossRef]
  6. C. Xu, X. Liu, and X. Wei, IEEE J. Sel. Top. Quantum Electron. 10, 281 (2004).
    [CrossRef]
  7. U. Neukirch, M. Hempstead, G. Piech, Y. Mauro, M. Mlejnek, M. J. Soulliere, M. Webb, D. Pikula, R. Hoyt, M. Anderegg, M. Dailey, F. Wang, C. Drewnowski, and D. Sobiski, J. Lightwave Technol. 22, 1189 (2004).
    [CrossRef]
  8. V. Chernyak, M. Chertkov, I. Gabitov, I. Kolokolov, and V. Lebedev, J. Lightwave Technol. 22, 1155 (2004).
    [CrossRef]

2004 (5)

2003 (1)

P. J. Winzer, S. Chandrasekhar, and H. Kim, IEEE Photon. Technol. Lett. 15, 840 (2003).
[CrossRef]

1990 (1)

D. Marcuse, J. Lightwave Technol. 8, 1816 (1990).
[CrossRef]

1988 (1)

R. A. Linke and A. H. Gnauck, J. Lightwave Technol. 6, 1750 (1988).
[CrossRef]

Anderegg, M.

Bosco, G.

G. Bosco and P. Poggiolini, IEEE Photon. Technol. Lett. 16, 665 (2004).
[CrossRef]

Chandrasekhar, S.

P. J. Winzer, S. Chandrasekhar, and H. Kim, IEEE Photon. Technol. Lett. 15, 840 (2003).
[CrossRef]

Chernyak, V.

Chertkov, M.

Dailey, M.

Drewnowski, C.

Gabitov, I.

Gnauck, A. H.

R. A. Linke and A. H. Gnauck, J. Lightwave Technol. 6, 1750 (1988).
[CrossRef]

Hempstead, M.

Hoyt, R.

Kim, H.

P. J. Winzer, S. Chandrasekhar, and H. Kim, IEEE Photon. Technol. Lett. 15, 840 (2003).
[CrossRef]

Kolokolov, I.

Lebedev, V.

Linke, R. A.

R. A. Linke and A. H. Gnauck, J. Lightwave Technol. 6, 1750 (1988).
[CrossRef]

Liu, X.

C. Xu, X. Liu, and X. Wei, IEEE J. Sel. Top. Quantum Electron. 10, 281 (2004).
[CrossRef]

Marcuse, D.

D. Marcuse, J. Lightwave Technol. 8, 1816 (1990).
[CrossRef]

Mauro, Y.

Mlejnek, M.

Neukirch, U.

Piech, G.

Pikula, D.

Poggiolini, P.

G. Bosco and P. Poggiolini, IEEE Photon. Technol. Lett. 16, 665 (2004).
[CrossRef]

Sobiski, D.

Soulliere, M. J.

Wang, F.

Wang, L.

Webb, M.

Wei, X.

C. Xu, X. Liu, and X. Wei, IEEE J. Sel. Top. Quantum Electron. 10, 281 (2004).
[CrossRef]

Winzer, P. J.

P. J. Winzer, S. Chandrasekhar, and H. Kim, IEEE Photon. Technol. Lett. 15, 840 (2003).
[CrossRef]

Xie, C.

Xu, C.

C. Xu, X. Liu, and X. Wei, IEEE J. Sel. Top. Quantum Electron. 10, 281 (2004).
[CrossRef]

Zhang, G.

Zhang, X.

IEEE J. Sel. Top. Quantum Electron. (1)

C. Xu, X. Liu, and X. Wei, IEEE J. Sel. Top. Quantum Electron. 10, 281 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

G. Bosco and P. Poggiolini, IEEE Photon. Technol. Lett. 16, 665 (2004).
[CrossRef]

P. J. Winzer, S. Chandrasekhar, and H. Kim, IEEE Photon. Technol. Lett. 15, 840 (2003).
[CrossRef]

J. Lightwave Technol. (4)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

General setup of a DPSK detector. D and C denote the destructive and constructive ends of the delay interferometer. I S { I + , I } .

Fig. 2
Fig. 2

DPSK Q-factor improvement versus detector imbalance β. Dashed curve, OSNR advantage.[3]

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Q 2 erfc 1 ( 2 BER ) I ¯ 1 I ¯ 0 σ ̃ 1 + σ ̃ 0 .
I ̃ d σ ̃ 0 I ¯ 1 + σ ̃ 1 I ¯ 0 σ ̃ 1 + σ ̃ 0 .
I ¯ S = ( I ¯ C I ¯ D ) + β ( I ¯ C + I ¯ D ) ,
σ ̃ S 2 = ( 1 + β ) 2 σ ̃ C 2 + ( 1 β ) 2 σ ̃ D 2 .
I ¯ ± = ± ( I ¯ 1 I ¯ 0 ) + β ( I ¯ 1 + I ¯ 0 ) ,
σ ̃ ± 2 = ( 1 ± β ) 2 σ ̃ 1 2 + ( 1 β ) 2 σ ̃ 0 2 ,
Q β I ¯ + I ¯ σ ̃ + + σ ̃ , I ¯ d β σ ̃ I ¯ + + σ ̃ + I ¯ σ ̃ + + σ ̃ .
Q bal I ¯ 1 I ¯ 0 σ ̃ 1 2 + σ ̃ 0 2 .
Q bal Q unb σ ̃ 1 + σ ̃ 0 σ ̃ 1 2 + σ ̃ 0 2 = 1 + σ r 1 + σ r 2 .
Q β Q unb 2 ( 1 + σ r ) ( 1 + β ) 2 + ( 1 β ) 2 σ r 2 + ( 1 β ) 2 + ( 1 + β ) 2 σ r 2 .
s d = 1 + 1 4 M 2 s ( M s 1 4 ln s ln A + ( M 1 ) ln s d + 3 4 ln ( s d 1 ) ) 2 .
I d N I ̃ d I ¯ 1 I ¯ 0 = s d s 1 4 , as s .
I d N 1 4 [ 1 + α + η ( ln M ) γ s + δ + κ ( M 1 ) ] .
σ r = σ ̃ 0 σ ̃ 1 I d N 1 s 1 + 1 s I d N .

Metrics