Abstract

We demonstrate three-dimensional trapping and orientation of individual Au nanorods by using laser light slightly detuned from their longitudinal plasmon mode. Detuning to the long-wavelength side of the resonance allows stable trapping for several minutes, with an exponential dependence of trapping time on laser power (consistent with a Kramer’s escape process). Detuning to the short-wavelength side causes repulsion of the rods from the laser focus. Alignment of the long axis of the rods with the trapping laser polarization is observed as a suppression of rotational diffusion about the short axis.

© 2006 Optical Society of America

Full Article  |  PDF Article
Related Articles
Optical properties of surface plasmon resonances of coupled metallic nanorods

Elizabeth J. Smythe, Ertugrul Cubukcu, and Federico Capasso
Opt. Express 15(12) 7439-7447 (2007)

Plasmon resonance-based optical trapping of single and multiple Au nanoparticles

K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P. Guyot-Sionnest, and N. F. Scherer
Opt. Express 15(19) 12017-12029 (2007)

Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats
Opt. Express 16(10) 7460-7470 (2008)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription