Abstract

We demonstrate electrically pumped InGaAsP two-dimensional Bragg grating (2DBG) lasers with two line defects. The 2DBG structure uses a weak 2D index perturbation surface grating to control the optical modes in the plane of the wafer. Measurements of the 2DBG lasers show that modal control in both the longitudinal and transverse directions is due to the gratings and defects. The 2DBG lasers are promising candidates for single-mode, high power, and high efficiency large-area lasers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nakamura and A. Yariv, Appl. Phys. Lett. 22, 515 (1973).
    [CrossRef]
  2. A. Yariv, Opt. Lett. 27, 936 (2002).
    [CrossRef]
  3. A. Yariv, Y. Xu, and S. Mookherjea, Opt. Lett. 28, 176 (2003).
    [CrossRef] [PubMed]
  4. J. M. Choi, L. Zhu, W. Green, G. Derose, and A. Yariv, ''Large-area semiconductor transeverses Bragg resonance (TBR) lasers for efficient, high power operation,'' in ICALEO 2005 24th International Congress on Applications of Lasers and Electro-optics, (Laser Institute of America, 2005), paper #406.
  5. M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, Appl. Phys. Lett. 81, 2680 (2002).
    [CrossRef]
  6. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, Science 305, 1444 (2004).
    [CrossRef] [PubMed]
  7. W. Green, J. Scheuer, G. DeRose, and A. Yariv, Appl. Phys. Lett. 85, 3669 (2004).
    [CrossRef]
  8. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley Interscience, 2003).

2005 (1)

J. M. Choi, L. Zhu, W. Green, G. Derose, and A. Yariv, ''Large-area semiconductor transeverses Bragg resonance (TBR) lasers for efficient, high power operation,'' in ICALEO 2005 24th International Congress on Applications of Lasers and Electro-optics, (Laser Institute of America, 2005), paper #406.

2004 (2)

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, Science 305, 1444 (2004).
[CrossRef] [PubMed]

W. Green, J. Scheuer, G. DeRose, and A. Yariv, Appl. Phys. Lett. 85, 3669 (2004).
[CrossRef]

2003 (2)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley Interscience, 2003).

A. Yariv, Y. Xu, and S. Mookherjea, Opt. Lett. 28, 176 (2003).
[CrossRef] [PubMed]

2002 (2)

A. Yariv, Opt. Lett. 27, 936 (2002).
[CrossRef]

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, Appl. Phys. Lett. 81, 2680 (2002).
[CrossRef]

1973 (1)

M. Nakamura and A. Yariv, Appl. Phys. Lett. 22, 515 (1973).
[CrossRef]

Baek, J. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, Science 305, 1444 (2004).
[CrossRef] [PubMed]

Choi, J. M.

J. M. Choi, L. Zhu, W. Green, G. Derose, and A. Yariv, ''Large-area semiconductor transeverses Bragg resonance (TBR) lasers for efficient, high power operation,'' in ICALEO 2005 24th International Congress on Applications of Lasers and Electro-optics, (Laser Institute of America, 2005), paper #406.

Derose, G.

J. M. Choi, L. Zhu, W. Green, G. Derose, and A. Yariv, ''Large-area semiconductor transeverses Bragg resonance (TBR) lasers for efficient, high power operation,'' in ICALEO 2005 24th International Congress on Applications of Lasers and Electro-optics, (Laser Institute of America, 2005), paper #406.

W. Green, J. Scheuer, G. DeRose, and A. Yariv, Appl. Phys. Lett. 85, 3669 (2004).
[CrossRef]

Gogna, P.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, Appl. Phys. Lett. 81, 2680 (2002).
[CrossRef]

Green, W.

J. M. Choi, L. Zhu, W. Green, G. Derose, and A. Yariv, ''Large-area semiconductor transeverses Bragg resonance (TBR) lasers for efficient, high power operation,'' in ICALEO 2005 24th International Congress on Applications of Lasers and Electro-optics, (Laser Institute of America, 2005), paper #406.

W. Green, J. Scheuer, G. DeRose, and A. Yariv, Appl. Phys. Lett. 85, 3669 (2004).
[CrossRef]

Ju, Y. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, Science 305, 1444 (2004).
[CrossRef] [PubMed]

Kim, S. B.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, Science 305, 1444 (2004).
[CrossRef] [PubMed]

Kim, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, Science 305, 1444 (2004).
[CrossRef] [PubMed]

Kwon, S. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, Science 305, 1444 (2004).
[CrossRef] [PubMed]

Lee, Y. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, Science 305, 1444 (2004).
[CrossRef] [PubMed]

Loncar, M.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, Appl. Phys. Lett. 81, 2680 (2002).
[CrossRef]

Mookherjea, S.

Nakamura, M.

M. Nakamura and A. Yariv, Appl. Phys. Lett. 22, 515 (1973).
[CrossRef]

Park, H. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, Science 305, 1444 (2004).
[CrossRef] [PubMed]

Qiu, Y.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, Appl. Phys. Lett. 81, 2680 (2002).
[CrossRef]

Scherer, A.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, Appl. Phys. Lett. 81, 2680 (2002).
[CrossRef]

Scheuer, J.

W. Green, J. Scheuer, G. DeRose, and A. Yariv, Appl. Phys. Lett. 85, 3669 (2004).
[CrossRef]

Xu, Y.

Yang, J. K.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, Science 305, 1444 (2004).
[CrossRef] [PubMed]

Yariv, A.

J. M. Choi, L. Zhu, W. Green, G. Derose, and A. Yariv, ''Large-area semiconductor transeverses Bragg resonance (TBR) lasers for efficient, high power operation,'' in ICALEO 2005 24th International Congress on Applications of Lasers and Electro-optics, (Laser Institute of America, 2005), paper #406.

W. Green, J. Scheuer, G. DeRose, and A. Yariv, Appl. Phys. Lett. 85, 3669 (2004).
[CrossRef]

A. Yariv, Y. Xu, and S. Mookherjea, Opt. Lett. 28, 176 (2003).
[CrossRef] [PubMed]

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley Interscience, 2003).

A. Yariv, Opt. Lett. 27, 936 (2002).
[CrossRef]

M. Nakamura and A. Yariv, Appl. Phys. Lett. 22, 515 (1973).
[CrossRef]

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley Interscience, 2003).

Yoshie, T.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, Appl. Phys. Lett. 81, 2680 (2002).
[CrossRef]

Zhu, L.

J. M. Choi, L. Zhu, W. Green, G. Derose, and A. Yariv, ''Large-area semiconductor transeverses Bragg resonance (TBR) lasers for efficient, high power operation,'' in ICALEO 2005 24th International Congress on Applications of Lasers and Electro-optics, (Laser Institute of America, 2005), paper #406.

Appl. Phys. Lett. (3)

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, Appl. Phys. Lett. 81, 2680 (2002).
[CrossRef]

W. Green, J. Scheuer, G. DeRose, and A. Yariv, Appl. Phys. Lett. 85, 3669 (2004).
[CrossRef]

M. Nakamura and A. Yariv, Appl. Phys. Lett. 22, 515 (1973).
[CrossRef]

Opt. Lett. (2)

Science (1)

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, Science 305, 1444 (2004).
[CrossRef] [PubMed]

Other (2)

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley Interscience, 2003).

J. M. Choi, L. Zhu, W. Green, G. Derose, and A. Yariv, ''Large-area semiconductor transeverses Bragg resonance (TBR) lasers for efficient, high power operation,'' in ICALEO 2005 24th International Congress on Applications of Lasers and Electro-optics, (Laser Institute of America, 2005), paper #406.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

An illustration of a 2DBG laser with two line defects. a is the transverse grating period, b is the longitudinal grating period, W 1 is the transverse defect width, and W 2 is the longitudinal defect width.

Fig. 2
Fig. 2

SEM image of a 2DBG laser. Inset, details of the air holes, each with a radius of 100 nm . The image was taken after a RIE step through the InGaAsP wafer before the deposition of electrical contacts.

Fig. 3
Fig. 3

Light-current density curve with a clear threshold occurring at 442 A cm 2 (average power versus peak current density).

Fig. 4
Fig. 4

(a)–(c) Laser spectra above the threshold obtained under several pump currents. (d) Spectrum of a TBR laser at 1.3 J th pump current. Inset of (b), spectrum in logarithmic scale.

Metrics