Abstract

We study the conversion bandwidth of the cross-polarization-modulation (XPoIM)-based wavelength conversion scheme with a dispersion-flattened highly nonlinear photonic-crystal fiber for signals with a nonreturn-to-zero (NRZ) modulation format. Both theoretical and experimental results show that the conversion bandwidth can be extended to cover a very wide band, including S-, C-, and L-bands for 10Gbits NRZ signals (a total bandwidth of 120nm is experimentally demonstrated). We also study the theoretical bandwidth limit for 40Gbits NRZ signals. A significant extension of the conversion bandwidth using the XPoIM approach compared with the four-wave mixing approach previously reported is demonstrated.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, IEEE Photon. Technol. Lett. 15, 437 (2003).
    [CrossRef]
  2. J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, Electron. Lett. 41, 49 (2005).
    [CrossRef]
  3. A. Tzanakaki and M. J. O'Mahony, in IEE Proceedings in Optoelectronics (Institution of Electrical Engineers, 2000), pp. 49-55.
  4. A. Zhang and M. S. Demokan, Opt. Lett. 30, 2375 (2005).
    [CrossRef] [PubMed]
  5. K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, IEEE Photon. Technol. Lett. 17, 624 (2005).
    [CrossRef]
  6. P. A. Snow, I. E. Day, I. H. White, H. K. Tsang, R. V. Penty, R. S. Grant, Z. Su, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andredakis, and M. S. Kim, Electron. Lett. 28, 2346 (1992).
  7. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001), Chaps. 2, 4, and 7.
  8. T. Kato, Y. Suetsugu, M. Takagi, E. Sasaoka, and M. Nishimura, Opt. Lett. 20, 988 (1995).
    [CrossRef] [PubMed]
  9. K. P. Hansen, J. R. Folkenberg, C. Peucheret, and A. Bjarklev, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), postdeadline paper PD2-1.

2005 (3)

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, Electron. Lett. 41, 49 (2005).
[CrossRef]

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, IEEE Photon. Technol. Lett. 17, 624 (2005).
[CrossRef]

A. Zhang and M. S. Demokan, Opt. Lett. 30, 2375 (2005).
[CrossRef] [PubMed]

2003 (2)

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, IEEE Photon. Technol. Lett. 15, 437 (2003).
[CrossRef]

K. P. Hansen, J. R. Folkenberg, C. Peucheret, and A. Bjarklev, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), postdeadline paper PD2-1.

2001 (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001), Chaps. 2, 4, and 7.

2000 (1)

A. Tzanakaki and M. J. O'Mahony, in IEE Proceedings in Optoelectronics (Institution of Electrical Engineers, 2000), pp. 49-55.

1995 (1)

1992 (1)

P. A. Snow, I. E. Day, I. H. White, H. K. Tsang, R. V. Penty, R. S. Grant, Z. Su, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andredakis, and M. S. Kim, Electron. Lett. 28, 2346 (1992).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001), Chaps. 2, 4, and 7.

Andredakis, N. C.

P. A. Snow, I. E. Day, I. H. White, H. K. Tsang, R. V. Penty, R. S. Grant, Z. Su, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andredakis, and M. S. Kim, Electron. Lett. 28, 2346 (1992).

Belardi, W.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, IEEE Photon. Technol. Lett. 15, 437 (2003).
[CrossRef]

Bjarklev, A.

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, IEEE Photon. Technol. Lett. 17, 624 (2005).
[CrossRef]

K. P. Hansen, J. R. Folkenberg, C. Peucheret, and A. Bjarklev, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), postdeadline paper PD2-1.

Chow, K. K.

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, IEEE Photon. Technol. Lett. 17, 624 (2005).
[CrossRef]

Day, I. E.

P. A. Snow, I. E. Day, I. H. White, H. K. Tsang, R. V. Penty, R. S. Grant, Z. Su, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andredakis, and M. S. Kim, Electron. Lett. 28, 2346 (1992).

Demokan, M. S.

Folkenberg, J. R.

K. P. Hansen, J. R. Folkenberg, C. Peucheret, and A. Bjarklev, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), postdeadline paper PD2-1.

Grant, R. S.

P. A. Snow, I. E. Day, I. H. White, H. K. Tsang, R. V. Penty, R. S. Grant, Z. Su, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andredakis, and M. S. Kim, Electron. Lett. 28, 2346 (1992).

Hansen, K. P.

K. P. Hansen, J. R. Folkenberg, C. Peucheret, and A. Bjarklev, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), postdeadline paper PD2-1.

Hasegawa, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, Electron. Lett. 41, 49 (2005).
[CrossRef]

Ibsen, M.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, IEEE Photon. Technol. Lett. 15, 437 (2003).
[CrossRef]

Kato, T.

Kikuchi, K.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, Electron. Lett. 41, 49 (2005).
[CrossRef]

Kim, M. S.

P. A. Snow, I. E. Day, I. H. White, H. K. Tsang, R. V. Penty, R. S. Grant, Z. Su, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andredakis, and M. S. Kim, Electron. Lett. 28, 2346 (1992).

Leblanc, H. P.

P. A. Snow, I. E. Day, I. H. White, H. K. Tsang, R. V. Penty, R. S. Grant, Z. Su, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andredakis, and M. S. Kim, Electron. Lett. 28, 2346 (1992).

Lee, J. H.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, Electron. Lett. 41, 49 (2005).
[CrossRef]

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, IEEE Photon. Technol. Lett. 15, 437 (2003).
[CrossRef]

Lin, C.

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, IEEE Photon. Technol. Lett. 17, 624 (2005).
[CrossRef]

Monro, T. M.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, IEEE Photon. Technol. Lett. 15, 437 (2003).
[CrossRef]

Nagashima, T.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, Electron. Lett. 41, 49 (2005).
[CrossRef]

Nishimura, M.

Ohara, S.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, Electron. Lett. 41, 49 (2005).
[CrossRef]

O'Mahony, M. J.

A. Tzanakaki and M. J. O'Mahony, in IEE Proceedings in Optoelectronics (Institution of Electrical Engineers, 2000), pp. 49-55.

Penty, R. V.

P. A. Snow, I. E. Day, I. H. White, H. K. Tsang, R. V. Penty, R. S. Grant, Z. Su, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andredakis, and M. S. Kim, Electron. Lett. 28, 2346 (1992).

Peucheret, C.

K. P. Hansen, J. R. Folkenberg, C. Peucheret, and A. Bjarklev, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), postdeadline paper PD2-1.

Richardson, D. J.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, IEEE Photon. Technol. Lett. 15, 437 (2003).
[CrossRef]

Sasaoka, E.

Shu, C.

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, IEEE Photon. Technol. Lett. 17, 624 (2005).
[CrossRef]

Sibbett, W.

P. A. Snow, I. E. Day, I. H. White, H. K. Tsang, R. V. Penty, R. S. Grant, Z. Su, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andredakis, and M. S. Kim, Electron. Lett. 28, 2346 (1992).

Snow, P. A.

P. A. Snow, I. E. Day, I. H. White, H. K. Tsang, R. V. Penty, R. S. Grant, Z. Su, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andredakis, and M. S. Kim, Electron. Lett. 28, 2346 (1992).

Soole, J. B. D.

P. A. Snow, I. E. Day, I. H. White, H. K. Tsang, R. V. Penty, R. S. Grant, Z. Su, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andredakis, and M. S. Kim, Electron. Lett. 28, 2346 (1992).

Su, Z.

P. A. Snow, I. E. Day, I. H. White, H. K. Tsang, R. V. Penty, R. S. Grant, Z. Su, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andredakis, and M. S. Kim, Electron. Lett. 28, 2346 (1992).

Suetsugu, Y.

Sugimoto, N.

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, Electron. Lett. 41, 49 (2005).
[CrossRef]

Takagi, M.

Tsang, H. K.

P. A. Snow, I. E. Day, I. H. White, H. K. Tsang, R. V. Penty, R. S. Grant, Z. Su, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andredakis, and M. S. Kim, Electron. Lett. 28, 2346 (1992).

Tzanakaki, A.

A. Tzanakaki and M. J. O'Mahony, in IEE Proceedings in Optoelectronics (Institution of Electrical Engineers, 2000), pp. 49-55.

White, I. H.

P. A. Snow, I. E. Day, I. H. White, H. K. Tsang, R. V. Penty, R. S. Grant, Z. Su, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andredakis, and M. S. Kim, Electron. Lett. 28, 2346 (1992).

Yusoff, Z.

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, IEEE Photon. Technol. Lett. 15, 437 (2003).
[CrossRef]

Zhang, A.

Electron. Lett. (2)

J. H. Lee, T. Nagashima, T. Hasegawa, S. Ohara, N. Sugimoto, and K. Kikuchi, Electron. Lett. 41, 49 (2005).
[CrossRef]

P. A. Snow, I. E. Day, I. H. White, H. K. Tsang, R. V. Penty, R. S. Grant, Z. Su, W. Sibbett, J. B. D. Soole, H. P. Leblanc, N. C. Andredakis, and M. S. Kim, Electron. Lett. 28, 2346 (1992).

IEEE Photon. Technol. Lett. (2)

J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, IEEE Photon. Technol. Lett. 15, 437 (2003).
[CrossRef]

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, IEEE Photon. Technol. Lett. 17, 624 (2005).
[CrossRef]

Opt. Lett. (2)

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001), Chaps. 2, 4, and 7.

K. P. Hansen, J. R. Folkenberg, C. Peucheret, and A. Bjarklev, in Optical Fiber Communication Conference (OFC), Vol. 86 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2003), postdeadline paper PD2-1.

A. Tzanakaki and M. J. O'Mahony, in IEE Proceedings in Optoelectronics (Institution of Electrical Engineers, 2000), pp. 49-55.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustrations of the XPM-induced polarization rotation. (a) Input components of the control signal and the cw beam. (b), (c) XPM-induced phase lag for the cw beam. (d) Poincaré sphere representation of the corresponding states of polarization.

Fig. 2
Fig. 2

(a) Calculated switching loss (solid curve) and ratio (dashed curve) against the phase lag of the cw beam. P π = 3 λ Probe A eff 8 n 2 L is the power required to achieve π phase lag with zero walk-off (b) Calculated differential phase shift of a third-order super-Gaussian pulse for (upper) 40 Gbit s and (lower) 10 Gbit s with different walk-off values. Walk-off values: 0 to 5 ps ( 1 ps step size) and to 20 ps ( 4 ps step size), respectively, for 40 and 10 Gbit s signals. Values are normalized to the maximum phase shift with zero walk-off. T 0 , 1 e half-width of the pulse intensity; T R , rise–fall time of the super-Gaussian pulse.

Fig. 3
Fig. 3

Calculated walk-off from 1550 nm control signal in a 64 m PCF and its corresponding conversion efficiency for 10 and 40 Gbit s signals normalized to the one with zero walk-off at a same input control power. (a)–(e) Simulated output converted signal at 10 Gbit s with walk-off ranging from 20 to 100 ps for every 20 ps .

Fig. 4
Fig. 4

Experimental setup for the S-, C-, and L-band wavelength conversion. EDFA, erbium-doped fiber; PC, polarized controller; BPF, bandpass filter.

Fig. 5
Fig. 5

Measured (upper) and simulated (lower) eye diagrams captured at 5 dBm average power, for (a) 1550 nm source signal, and (b) 1480, (c) 1560, and (d) 1600 nm converted signals. Time base, 1 bit division for simulated eye diagrams, 50 ps division for measured eye diagrams.

Fig. 6
Fig. 6

Measured 10 Gbit s bit error rate performance of the back-to-back signal at 1550 nm ( ) and the converted signal at 1560 nm ( × ) . Inset, simulated change of the Q factor of the converted signal versus wavelengths.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( T ) = 4 π n 2 λ Probe A eff 0 L E C ( 0 , T + Δ T z L ) 2 d z ,
ϕ ( T ) = 4 π n 2 3 λ Probe A eff 0 L E C ( 0 , T + Δ T z L ) 2 d z ,
Δ ϕ ( T ) = 8 π n 2 L T 0 P 0 3 λ Probe A eff Δ T { n = 0 ( 1 ) n ! ( 2 n m + 1 ) [ ( T + Δ T ) 2 n m + 1 T 2 n m 1 T 0 2 n m + 1 ] } .

Metrics