Abstract

A simple self-referenced nondestructive method is proposed for measuring the cutoff wavelength of microstructured optical fibers (MOFs). It is based on the analysis of the time-dependent optical power transmitted through a bow-tie slit rotating in the far-field pattern of the fiber under test. As a first demonstration, the cutoff wavelength of a 2m MOF sample is found to be close to that provided by numerical predictions (25nm higher). Because of the high dynamics of the measurement, the uncertainty is limited to Δλ=±10nm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, Science 299, 358 (2003).
    [CrossRef] [PubMed]
  2. B. T. Kuhlmey, R. C. McPhedran, and C. Martijn de Sterke, Opt. Lett. 27, 1684 (2002).
    [CrossRef]
  3. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  4. G. Renversez, F. Bordas, and B. Kuhlmey, Opt. Lett. 30, 1264 (2005).
    [CrossRef] [PubMed]
  5. CEI/IEC International Standard 793-1-C7A, ''Cutoff wavelength measurement for single-mode fibre.''
  6. J. R. Folkenberg, N. A. Mortensen, K. P. Hansen, T. P. Hansen, H. R. Simonsen, and C. Jakobsen, Opt. Lett. 28, 1882 (2003).
    [CrossRef] [PubMed]
  7. J. M. Blondy, A. M. Blanc, M. Clapeau, and P. Facq, Electron. Lett. 23, 522 (1987).
    [CrossRef]
  8. P. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, and P. Nérin, Opt. Express 12, 4366 (2004).
    [CrossRef] [PubMed]
  9. D. Pagnoux, J. M. Blondy, P. DiBin, P. Faugeras, and P. Facq, J. Lightwave Technol. 12, 385 (1994).
    [CrossRef]
  10. N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, K. P. Hansen, and J. Laegsgaard, J. Opt. A 6, 221 (2004).
    [CrossRef]
  11. D. Ferrarini, L. Vincentti, M. Zoboli, A. Cucinotta, and S. Selleri, Opt. Express 10, 1314 (2002).
    [PubMed]
  12. B. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran, J. Opt. Soc. Am. B 10, 2331 (2002).
    [CrossRef]

2005

2004

2003

2002

2000

1994

D. Pagnoux, J. M. Blondy, P. DiBin, P. Faugeras, and P. Facq, J. Lightwave Technol. 12, 385 (1994).
[CrossRef]

1987

J. M. Blondy, A. M. Blanc, M. Clapeau, and P. Facq, Electron. Lett. 23, 522 (1987).
[CrossRef]

Blanc, A. M.

J. M. Blondy, A. M. Blanc, M. Clapeau, and P. Facq, Electron. Lett. 23, 522 (1987).
[CrossRef]

Blondy, J. M.

D. Pagnoux, J. M. Blondy, P. DiBin, P. Faugeras, and P. Facq, J. Lightwave Technol. 12, 385 (1994).
[CrossRef]

J. M. Blondy, A. M. Blanc, M. Clapeau, and P. Facq, Electron. Lett. 23, 522 (1987).
[CrossRef]

Bordas, F.

Botten, L. C.

Champert, P.

Clapeau, M.

J. M. Blondy, A. M. Blanc, M. Clapeau, and P. Facq, Electron. Lett. 23, 522 (1987).
[CrossRef]

Couderc, V.

Cucinotta, A.

DiBin, P.

D. Pagnoux, J. M. Blondy, P. DiBin, P. Faugeras, and P. Facq, J. Lightwave Technol. 12, 385 (1994).
[CrossRef]

Facq, P.

D. Pagnoux, J. M. Blondy, P. DiBin, P. Faugeras, and P. Facq, J. Lightwave Technol. 12, 385 (1994).
[CrossRef]

J. M. Blondy, A. M. Blanc, M. Clapeau, and P. Facq, Electron. Lett. 23, 522 (1987).
[CrossRef]

Faugeras, P.

D. Pagnoux, J. M. Blondy, P. DiBin, P. Faugeras, and P. Facq, J. Lightwave Technol. 12, 385 (1994).
[CrossRef]

Ferrarini, D.

Février, S.

Folkenberg, J. R.

N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, K. P. Hansen, and J. Laegsgaard, J. Opt. A 6, 221 (2004).
[CrossRef]

J. R. Folkenberg, N. A. Mortensen, K. P. Hansen, T. P. Hansen, H. R. Simonsen, and C. Jakobsen, Opt. Lett. 28, 1882 (2003).
[CrossRef] [PubMed]

Froehly, C.

Hansen, K. P.

N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, K. P. Hansen, and J. Laegsgaard, J. Opt. A 6, 221 (2004).
[CrossRef]

J. R. Folkenberg, N. A. Mortensen, K. P. Hansen, T. P. Hansen, H. R. Simonsen, and C. Jakobsen, Opt. Lett. 28, 1882 (2003).
[CrossRef] [PubMed]

Hansen, T. P.

Jakobsen, C.

Kuhlmey, B.

Kuhlmey, B. T.

Labonté, L.

Laegsgaard, J.

N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, K. P. Hansen, and J. Laegsgaard, J. Opt. A 6, 221 (2004).
[CrossRef]

Leproux, P.

Martijn de Sterke, C.

Maystre, D.

McPhedran, R. C.

Mortensen, N. A.

N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, K. P. Hansen, and J. Laegsgaard, J. Opt. A 6, 221 (2004).
[CrossRef]

J. R. Folkenberg, N. A. Mortensen, K. P. Hansen, T. P. Hansen, H. R. Simonsen, and C. Jakobsen, Opt. Lett. 28, 1882 (2003).
[CrossRef] [PubMed]

Nérin, P.

Nielsen, M. D.

N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, K. P. Hansen, and J. Laegsgaard, J. Opt. A 6, 221 (2004).
[CrossRef]

Pagnoux, D.

D. Pagnoux, J. M. Blondy, P. DiBin, P. Faugeras, and P. Facq, J. Lightwave Technol. 12, 385 (1994).
[CrossRef]

Ranka, K.

Renversez, G.

Roy, P.

Russell, P. St. J.

P. St. J. Russell, Science 299, 358 (2003).
[CrossRef] [PubMed]

Selleri, S.

Simonsen, H. R.

Stentz, A. J.

Tombelaine, V.

Vincentti, L.

White, T. P.

Windeler, R. S.

Zoboli, M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. Inset, cross section of the microstructured fiber.

Fig. 2
Fig. 2

Typical spectra measured with the setup described in Fig. 1a single-mode regime, (b) bimode regime [ Δ = A c ( dBV ) A l ( dBV ) ] .

Fig. 3
Fig. 3

Curve D ( λ ) measured with the fiber shown in Fig. 1 and described in the text ( λ c = 1370 nm , Δ λ = 20 nm ) .

Fig. 4
Fig. 4

Q as a function of wavelength for the first higher-order modes of the finite-size MOF described in the text. For clarity, the curves of the HE 21 -like modes, close to those of the TE 01 -like mode are not presented. The results from the finite-element method (FEM) and the multiple method (MM) are shown.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R ( λ ) = 10 log ( P 11 P 01 ) = 10 log [ F ( 1 F ) ] ,
D ( λ ) = 10 log [ 2 A l ( A c 2 A l ) ] .

Metrics