Abstract

We investigate the extreme-ultraviolet (EUV) emission from targets that contain tin as an impurity and the advantages of using these targets for ion debris mitigation by use of a magnetic field. The EUV spectral features were characterized by a transmission grating spectrograph. The in-band EUV emission energy was measured with a calorimeter of absolute calibration. The ion flux coming from the plume was measured with a Faraday cup. Our studies indicate that 0.5% Sn density is necessary to obtain a conversion efficiency very close to that of full-density Sn. The use of Sn-doped low-Z targets provides a narrower unresolved transition array and facilitates better control of energetic ions in the presence of a moderate magnetic field of 0.64T.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription