Abstract

We present a specially designed hybrid optics comprising refraction and diffraction effects for tight spatial and temporal focusing of ultrashort laser pulses. Both aims can be put into practice by having a high numerical aperture (NA=0.45) and low internal dispersion at the same time. We are presenting what we believe is the first experimental realization of such a hybrid short plus focusing optics. The focusing properties are compared with a commonly used microscope objective (20×,NA=0.45) in theory and experimentally.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J.-P. Ruske, B. N. Chichkov, and A. Tünnermann, Opt. Express 7, 41 (2000).
    [CrossRef] [PubMed]
  2. J. Squier and M. Müller, Rev. Sci. Instrum. 72, 2855 (2001).
    [CrossRef]
  3. S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, Appl. Phys. A 77, 109 (2003).
    [CrossRef]
  4. R. Piestun and D. A. B. Miller, Opt. Lett. 26, 1373 (2001).
    [CrossRef]
  5. U. Fuchs, U. D. Zeitner, and A. Tünnermann, Opt. Express 13, 3852 (2005).
    [CrossRef] [PubMed]
  6. ZEMAX Optical Design Program, ZEMAX Development Corporation, USA.
  7. E. B. Kley, Microelectron. Eng. 34, 261 (1997).
    [CrossRef]
  8. P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, and E. B. Kley, Microsyst. Technol. 6, 41 (1999).
    [CrossRef]
  9. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
    [CrossRef]

2005 (1)

2003 (1)

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, Appl. Phys. A 77, 109 (2003).
[CrossRef]

2001 (2)

R. Piestun and D. A. B. Miller, Opt. Lett. 26, 1373 (2001).
[CrossRef]

J. Squier and M. Müller, Rev. Sci. Instrum. 72, 2855 (2001).
[CrossRef]

2000 (1)

1999 (1)

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, and E. B. Kley, Microsyst. Technol. 6, 41 (1999).
[CrossRef]

1998 (1)

1997 (1)

E. B. Kley, Microelectron. Eng. 34, 261 (1997).
[CrossRef]

Adams, S.

Bierbaum, R.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, and E. B. Kley, Microsyst. Technol. 6, 41 (1999).
[CrossRef]

Bräuer, A.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, and E. B. Kley, Microsyst. Technol. 6, 41 (1999).
[CrossRef]

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, Appl. Phys. A 77, 109 (2003).
[CrossRef]

Chichkov, B. N.

Dannberg, P.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, and E. B. Kley, Microsyst. Technol. 6, 41 (1999).
[CrossRef]

Egbert, A.

Erdmann, L.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, and E. B. Kley, Microsyst. Technol. 6, 41 (1999).
[CrossRef]

Fallnich, C.

Fuchs, U.

Iaconis, C.

Kley, E. B.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, and E. B. Kley, Microsyst. Technol. 6, 41 (1999).
[CrossRef]

E. B. Kley, Microelectron. Eng. 34, 261 (1997).
[CrossRef]

Korte, F.

Krehl, A.

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, and E. B. Kley, Microsyst. Technol. 6, 41 (1999).
[CrossRef]

Miller, D. A. B.

Müller, M.

J. Squier and M. Müller, Rev. Sci. Instrum. 72, 2855 (2001).
[CrossRef]

Nolte, S.

Ostendorf, A.

Piestun, R.

Ruske, J.-P.

Squier, J.

J. Squier and M. Müller, Rev. Sci. Instrum. 72, 2855 (2001).
[CrossRef]

Tünnermann, A.

Walmsley, I. A.

Will, M.

Zeitner, U. D.

Appl. Phys. A (1)

S. Nolte, M. Will, J. Burghoff, and A. Tünnermann, Appl. Phys. A 77, 109 (2003).
[CrossRef]

Microelectron. Eng. (1)

E. B. Kley, Microelectron. Eng. 34, 261 (1997).
[CrossRef]

Microsyst. Technol. (1)

P. Dannberg, L. Erdmann, R. Bierbaum, A. Krehl, A. Bräuer, and E. B. Kley, Microsyst. Technol. 6, 41 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Rev. Sci. Instrum. (1)

J. Squier and M. Müller, Rev. Sci. Instrum. 72, 2855 (2001).
[CrossRef]

Other (1)

ZEMAX Optical Design Program, ZEMAX Development Corporation, USA.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Hybrid optics consisting of a Geltech asphere (Thorlabs 350240) and a diffractive optical element (DOE).

Fig. 2
Fig. 2

Radial intensity distribution of a 40 fs laser pulse in the vicinity ( ± 200 μ m ) of the focus of the Geltech asphere (Thorlabs 350240). The pulse front suffers from distortion due to chromatic aberrations.

Fig. 3
Fig. 3

Technical realization of the hybrid optics for focusing into fused silica. The round glass substrate carries the diffractive structure (DOE).

Fig. 4
Fig. 4

Radial intensity distribution of a 40 fs laser pulse in the vicinity ( ± 200 μ m ) of the focus of the well-corrected hybrid optics consisting of the Geltech asphere and a DOE.

Fig. 5
Fig. 5

Calculated temporal pulse shape in the focus for ideal focusing, the hybrid optics, the asphere, and a microscope objective ( 20 × , NA = 0.45 ; Ref. [5]) for a 40 fs laser pulse (FWHM intensity) with 1 nJ pulse energy.

Fig. 6
Fig. 6

Pulse durations measured experimentally with SPIDER after double passing of the optics.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( r ) = A ( r r 0 ) 2 + B ( r r 0 ) 4 ,

Metrics