Abstract

The first demonstration, to the best of our knowledge, of electro-optical microscopy is presented and applied to a polymer-based optical device. A confocal transmission microscope with interferometric homodyne detection is implemented to measure Pockels phase shifts with micrometric spatial resolution and an accuracy level down to 4×107rad. This technique is applied to poled polymer films in which noncentrosymmetric molecular orientation is preliminarily achieved in the sample plane between transverse planar electrodes. The electro-optic mapping of this structure exhibits nonuniform and asymmetric patterns of the nonlinear response that are characteristic of the poling spatial inhomogeneity as confirmed by second-harmonic generation microscopy.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. C. Teng and H. T. Man, Appl. Phys. Lett. 18, 1734 (1990).
    [CrossRef]
  2. M. Dumont and Y. Levy, in Nonlinear Optics of Organics and Semiconductors, T.Kobayashi, ed., Vol. 36 of Springer Proceedings in Physics (Springer, 1989), p. 256.
  3. P. Nagtegaele, E. Brasselet, and J. Zyss, J. Opt. Soc. Am. B 20, 1932 (2003).
    [CrossRef]
  4. A. Donval, E. Toussaere, R. Hierle, and J. Zyss, J. Appl. Phys. 87, 3258 (2000).
    [CrossRef]
  5. S. Kluge, F. Budde, I. Dohnke, P. Rechsteiner, and J. Hulliger, Appl. Phys. Lett. 81, 247 (2002).
    [CrossRef]
  6. J. Chen, S. Machida, and Y. Yamamoto, Opt. Lett. 23, 676 (1998).
    [CrossRef]
  7. U. Leonhardt and H. Paul, Prog. Quantum Electron. 19, 89 (1995).
    [CrossRef]
  8. T. Toury, 'Microscopie électro-optique: étude, conception, applications,' Ph.D. dissertation (École Normale Superieure, Cachan, France, 2005).
  9. J. W. Wu, J. Opt. Soc. Am. B 8, 142 (1991).
    [CrossRef]
  10. C. Fiorini, F. Charra, J.-M. Nunzi, and P. Raimond, J. Opt. Soc. Am. B 14, 1984 (1997).
    [CrossRef]
  11. V. Le Floc'h, S. Brasselet, J.-F. Roch, and J. Zyss, J. Phys. Chem. B 107, 12430 (2003).

2003

V. Le Floc'h, S. Brasselet, J.-F. Roch, and J. Zyss, J. Phys. Chem. B 107, 12430 (2003).

P. Nagtegaele, E. Brasselet, and J. Zyss, J. Opt. Soc. Am. B 20, 1932 (2003).
[CrossRef]

2002

S. Kluge, F. Budde, I. Dohnke, P. Rechsteiner, and J. Hulliger, Appl. Phys. Lett. 81, 247 (2002).
[CrossRef]

2000

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, J. Appl. Phys. 87, 3258 (2000).
[CrossRef]

1998

1997

1995

U. Leonhardt and H. Paul, Prog. Quantum Electron. 19, 89 (1995).
[CrossRef]

1991

1990

C. C. Teng and H. T. Man, Appl. Phys. Lett. 18, 1734 (1990).
[CrossRef]

Brasselet, E.

Brasselet, S.

V. Le Floc'h, S. Brasselet, J.-F. Roch, and J. Zyss, J. Phys. Chem. B 107, 12430 (2003).

Budde, F.

S. Kluge, F. Budde, I. Dohnke, P. Rechsteiner, and J. Hulliger, Appl. Phys. Lett. 81, 247 (2002).
[CrossRef]

Charra, F.

Chen, J.

Dohnke, I.

S. Kluge, F. Budde, I. Dohnke, P. Rechsteiner, and J. Hulliger, Appl. Phys. Lett. 81, 247 (2002).
[CrossRef]

Donval, A.

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, J. Appl. Phys. 87, 3258 (2000).
[CrossRef]

Dumont, M.

M. Dumont and Y. Levy, in Nonlinear Optics of Organics and Semiconductors, T.Kobayashi, ed., Vol. 36 of Springer Proceedings in Physics (Springer, 1989), p. 256.

Fiorini, C.

Hierle, R.

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, J. Appl. Phys. 87, 3258 (2000).
[CrossRef]

Hulliger, J.

S. Kluge, F. Budde, I. Dohnke, P. Rechsteiner, and J. Hulliger, Appl. Phys. Lett. 81, 247 (2002).
[CrossRef]

Kluge, S.

S. Kluge, F. Budde, I. Dohnke, P. Rechsteiner, and J. Hulliger, Appl. Phys. Lett. 81, 247 (2002).
[CrossRef]

Le Floc'h, V.

V. Le Floc'h, S. Brasselet, J.-F. Roch, and J. Zyss, J. Phys. Chem. B 107, 12430 (2003).

Leonhardt, U.

U. Leonhardt and H. Paul, Prog. Quantum Electron. 19, 89 (1995).
[CrossRef]

Levy, Y.

M. Dumont and Y. Levy, in Nonlinear Optics of Organics and Semiconductors, T.Kobayashi, ed., Vol. 36 of Springer Proceedings in Physics (Springer, 1989), p. 256.

Machida, S.

Man, H. T.

C. C. Teng and H. T. Man, Appl. Phys. Lett. 18, 1734 (1990).
[CrossRef]

Nagtegaele, P.

Nunzi, J.-M.

Paul, H.

U. Leonhardt and H. Paul, Prog. Quantum Electron. 19, 89 (1995).
[CrossRef]

Raimond, P.

Rechsteiner, P.

S. Kluge, F. Budde, I. Dohnke, P. Rechsteiner, and J. Hulliger, Appl. Phys. Lett. 81, 247 (2002).
[CrossRef]

Roch, J.-F.

V. Le Floc'h, S. Brasselet, J.-F. Roch, and J. Zyss, J. Phys. Chem. B 107, 12430 (2003).

Teng, C. C.

C. C. Teng and H. T. Man, Appl. Phys. Lett. 18, 1734 (1990).
[CrossRef]

Toury, T.

T. Toury, 'Microscopie électro-optique: étude, conception, applications,' Ph.D. dissertation (École Normale Superieure, Cachan, France, 2005).

Toussaere, E.

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, J. Appl. Phys. 87, 3258 (2000).
[CrossRef]

Wu, J. W.

Yamamoto, Y.

Zyss, J.

P. Nagtegaele, E. Brasselet, and J. Zyss, J. Opt. Soc. Am. B 20, 1932 (2003).
[CrossRef]

V. Le Floc'h, S. Brasselet, J.-F. Roch, and J. Zyss, J. Phys. Chem. B 107, 12430 (2003).

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, J. Appl. Phys. 87, 3258 (2000).
[CrossRef]

Appl. Phys. Lett.

C. C. Teng and H. T. Man, Appl. Phys. Lett. 18, 1734 (1990).
[CrossRef]

S. Kluge, F. Budde, I. Dohnke, P. Rechsteiner, and J. Hulliger, Appl. Phys. Lett. 81, 247 (2002).
[CrossRef]

J. Appl. Phys.

A. Donval, E. Toussaere, R. Hierle, and J. Zyss, J. Appl. Phys. 87, 3258 (2000).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

V. Le Floc'h, S. Brasselet, J.-F. Roch, and J. Zyss, J. Phys. Chem. B 107, 12430 (2003).

Opt. Lett.

Prog. Quantum Electron.

U. Leonhardt and H. Paul, Prog. Quantum Electron. 19, 89 (1995).
[CrossRef]

Other

T. Toury, 'Microscopie électro-optique: étude, conception, applications,' Ph.D. dissertation (École Normale Superieure, Cachan, France, 2005).

M. Dumont and Y. Levy, in Nonlinear Optics of Organics and Semiconductors, T.Kobayashi, ed., Vol. 36 of Springer Proceedings in Physics (Springer, 1989), p. 256.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

General schematic of the EOM setup. PBS, polarization beam splitters; KDP, NLO crystal used for calibration; S, sample; P, confocal pinhole; Obj (40 times, 0.6 NA), objectives; ϕ ¯ ref , mean relative phase shift between the signal and the local oscillator arms; δ ϕ Ω , amplitude of the phase shift modulated at Ω; V Ω , modulated potential applied on the sample. f c 3 kHz .

Fig. 2
Fig. 2

(A) Polymer sample. The substrate is a transparent glass substrate ( 170 μ m thickness) covered with a 100 nm poly(methyl methacrylate) adherent layer, on which a 50 nm thick gold layer has been sputtered. The transverse electrodes (interdistance 10 μ m ) are fabricated by photolithography. A grafted MMA–DR1 (methyl methacrylate–Disperse Red One with a 70:30 weight:weight ratio), a polymer layer 2 μ m thick is spin coated on the top of the electrodes and cured at 125 ° C for 30 min . Mean poling field, 30 V μ m 1 at 125 ° C for 15 min before cooling. (B) Calculated EO mapping. (C) Experimental EO mapping. (D) SHG microscopy mapping measured in the conditions detailed in the text with a typical excitation intensity of 10 4 W cm 2 ; (B) (C) (D) maps size, 22 μ m ( front ) × 47 μ m (side); polarization of the signal beam, linear along x (3).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

δ I = 2 α ¯ LO α ¯ S Δ φ = 2 I LO I S Δ φ .
Δ φ i = π n i 3 λ BP j r i j E j d l ,

Metrics