Abstract

Three-dimensional photonic waveguide devices are fabricated in glass by use of femtosecond pulses from an extended-cavity laser oscillator. Three-dimensional devices, including a symmetric three-waveguide directional coupler and a three-dimensional microring resonator, are fabricated and tested. Waveguides can be fabricated at depths of 1mm inside a glass substrate, thus demonstrating the capability of achieving dramatic increases in device density. These results demonstrate the potential to fabricate new classes of devices that are not possible in two dimensions.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Opt. Lett. 21, 1729 (1996).
    [CrossRef] [PubMed]
  2. H. Varel, D. Ashkenasi, A. Rosenfeld, M. Waehmer, and E. E. B. Campbell, Appl. Phys. A: Mater. Sci. Process. 65, 367 (1997).
    [CrossRef]
  3. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Opt. Commun. 171, 279 (1999).
    [CrossRef]
  4. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, Opt. Lett. 21, 2023 (1996).
    [CrossRef] [PubMed]
  5. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, Opt. Lett. 24, 1311 (1999).
    [CrossRef]
  6. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, Opt. Lett. 26, 93 (2001).
    [CrossRef]
  7. A. M. Streltsov and N. F. Borrelli, Opt. Lett. 26, 42 (2001).
    [CrossRef]
  8. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, Opt. Lett. 26, 1516 (2001).
    [CrossRef]
  9. K. Minoshima, A. M. Kowalevicz, E. P. Ippen, and J. G. Fujimoto, Opt. Express 10, 645 (2002), http://www.opticsexpress.org.
    [CrossRef] [PubMed]
  10. C. Florea and K. A. Winick, J. Lightwave Technol. 21, 246 (2003).
    [CrossRef]
  11. R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. Silvestri, and G. Cerullo, J. Opt. Soc. Am. B 20, 1559 (2003).
    [CrossRef]
  12. Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, Electron. Lett. 36, 226 (2000).
    [CrossRef]
  13. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A: Mater. Sci. Process. 77, 109 (2003).
    [CrossRef]
  14. A. M. Kowalevicz, A. T. Zare, F. X. Kaertner, J. G. Fujimoto, S. Dewald, U. Morgner, V. Scheuer, and G. Angelow, Opt. Lett. 28, 1597 (2003).
    [CrossRef] [PubMed]
  15. M. Popovic, in Integrated Photonics Research, Postconference Digest, Vol. 91 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 143–145.

2003 (4)

2002 (1)

2001 (3)

2000 (1)

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, Electron. Lett. 36, 226 (2000).
[CrossRef]

1999 (2)

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Opt. Commun. 171, 279 (1999).
[CrossRef]

D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, Opt. Lett. 24, 1311 (1999).
[CrossRef]

1997 (1)

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Waehmer, and E. E. B. Campbell, Appl. Phys. A: Mater. Sci. Process. 65, 367 (1997).
[CrossRef]

1996 (2)

Angelow, G.

Ashkenasi, D.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Waehmer, and E. E. B. Campbell, Appl. Phys. A: Mater. Sci. Process. 65, 367 (1997).
[CrossRef]

Bado, P.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, Electron. Lett. 36, 226 (2000).
[CrossRef]

Borrelli, N. F.

Brodeur, A.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A: Mater. Sci. Process. 77, 109 (2003).
[CrossRef]

Callan, J. P.

Campbell, E. E. B.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Waehmer, and E. E. B. Campbell, Appl. Phys. A: Mater. Sci. Process. 65, 367 (1997).
[CrossRef]

Cerullo, G.

Davis, K. M.

Dewald, S.

Finlay, R. J.

Florea, C.

C. Florea and K. A. Winick, J. Lightwave Technol. 21, 246 (2003).
[CrossRef]

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, Electron. Lett. 36, 226 (2000).
[CrossRef]

Franco, M.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Opt. Commun. 171, 279 (1999).
[CrossRef]

Fujimoto, J. G.

Gaeta, A. L.

Garcia, J. F.

Glezer, E. N.

Hartl, I.

Her, T.-H.

Hirao, K.

Homoelle, D.

Huang, L.

Ippen, E. P.

Kaertner, F. X.

Kowalevicz, A. M.

Laporta, P.

Marangoni, M.

Maynard, R.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, Electron. Lett. 36, 226 (2000).
[CrossRef]

Mazur, E.

Milosavljevic, M.

Minoshima, K.

Miura, K.

Morgner, U.

Mysyrowicz, A.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Opt. Commun. 171, 279 (1999).
[CrossRef]

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A: Mater. Sci. Process. 77, 109 (2003).
[CrossRef]

Osellame, R.

Polli, D.

Popovic, M.

M. Popovic, in Integrated Photonics Research, Postconference Digest, Vol. 91 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 143–145.

Prade, B.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Opt. Commun. 171, 279 (1999).
[CrossRef]

Ramponi, R.

Rosenfeld, A.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Waehmer, and E. E. B. Campbell, Appl. Phys. A: Mater. Sci. Process. 65, 367 (1997).
[CrossRef]

Said, A. A.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, Electron. Lett. 36, 226 (2000).
[CrossRef]

Schaffer, C. B.

Scheuer, V.

Sikorski, Y.

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, Electron. Lett. 36, 226 (2000).
[CrossRef]

Silvestri, S.

Smith, C.

Streltsov, A. M.

Sudrie, L.

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Opt. Commun. 171, 279 (1999).
[CrossRef]

Sugimoto, N.

Taccheo, S.

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A: Mater. Sci. Process. 77, 109 (2003).
[CrossRef]

Varel, H.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Waehmer, and E. E. B. Campbell, Appl. Phys. A: Mater. Sci. Process. 65, 367 (1997).
[CrossRef]

Waehmer, M.

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Waehmer, and E. E. B. Campbell, Appl. Phys. A: Mater. Sci. Process. 65, 367 (1997).
[CrossRef]

Wielandy, S.

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A: Mater. Sci. Process. 77, 109 (2003).
[CrossRef]

Winick, K. A.

C. Florea and K. A. Winick, J. Lightwave Technol. 21, 246 (2003).
[CrossRef]

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, Electron. Lett. 36, 226 (2000).
[CrossRef]

Zare, A. T.

Appl. Phys. A: Mater. Sci. Process. (2)

H. Varel, D. Ashkenasi, A. Rosenfeld, M. Waehmer, and E. E. B. Campbell, Appl. Phys. A: Mater. Sci. Process. 65, 367 (1997).
[CrossRef]

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Appl. Phys. A: Mater. Sci. Process. 77, 109 (2003).
[CrossRef]

Electron. Lett. (1)

Y. Sikorski, A. A. Said, P. Bado, R. Maynard, C. Florea, and K. A. Winick, Electron. Lett. 36, 226 (2000).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, Opt. Commun. 171, 279 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (7)

Other (1)

M. Popovic, in Integrated Photonics Research, Postconference Digest, Vol. 91 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2003), pp. 143–145.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the symmetric three-waveguide directional coupler. Waveguides are initially separated by 50 μ m and by 5 μ m in interaction region L. (b) Inverse gray-scale CCD image of the waveguide outputs shows a 43:28:29 power-splitting ratio between the guides.

Fig. 2
Fig. 2

Schematic of the 3D microring resonator. (a) Top view—the ring is fabricated in the plane of the substrate and composed of two semicircular arcs with 1 - mm radii connected by 0.5 - mm waveguides. The input and output waveguides are separated horizontally by 100 μ m outside the interaction region. (b) Side view—the waveguides are separated by 5 μ m with a total depth separation of 10 μ m .

Fig. 3
Fig. 3

Normalized transfer function of the ring resonator. The fringe spacing of 57 pm at 800 nm is in excellent agreement with the predicted value of 58 pm for a ring length of 7.3 mm .

Metrics