Abstract

A simple difference frequency generation (DFG) scheme based on two seeded optical parametric generators is presented as a tunable terahertz (THz) source. Using the nonlinear optical crystal 4-dimethylamino-N-methyl-4-stilbazolium-tosylate (DAST) as the DFG crystal, our system has demonstrated continuous and seamless tunable operation from 1.6to4.5THz. The output bandwidth of the THz source is 2.4GHz. The utility of the source over this spectral range is demonstrated by measuring a high-resolution transmission spectrum of water vapor in air.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, Opt. Lett. 24, 1065 (1999).
    [CrossRef]
  2. T. Taniuchi, J. Shikata, and H. Ito, Electron. Lett. 36, 1414 (2000).
    [CrossRef]
  3. T. Taniuchi, S. Okada, and H. Nakanishi, J. Appl. Phys. 95, 5984 (2004).
    [CrossRef]
  4. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, Opt. Lett. 27, 1454 (2002).
    [CrossRef]
  5. P. E. Powers, K. A. Aniolek, T. J. Kulp, B. A. Richmann, and S. E. Bisson, Opt. Lett. 23, 1886 (1998).
    [CrossRef]
  6. M. Rahm, U. Bader, G. Anstett, J.-P. Meyn, R. Wallenstein, and A. Borsutzky, Appl. Phys. B Lasers Opt. 75, 47 (2002).
    [CrossRef]
  7. Y. Y. Guan, J. W. Haus, and P. E. Powers, J. Opt. Soc. Am. B 10, 443 (2004).
  8. U. Meier, M. Bosch, Ch. Bosshard, F. Pan, and P. Gunter, J. Appl. Phys. 83, 3486 (1998).
    [CrossRef]

2004 (2)

T. Taniuchi, S. Okada, and H. Nakanishi, J. Appl. Phys. 95, 5984 (2004).
[CrossRef]

Y. Y. Guan, J. W. Haus, and P. E. Powers, J. Opt. Soc. Am. B 10, 443 (2004).

2002 (2)

M. Rahm, U. Bader, G. Anstett, J.-P. Meyn, R. Wallenstein, and A. Borsutzky, Appl. Phys. B Lasers Opt. 75, 47 (2002).
[CrossRef]

W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, Opt. Lett. 27, 1454 (2002).
[CrossRef]

2000 (1)

T. Taniuchi, J. Shikata, and H. Ito, Electron. Lett. 36, 1414 (2000).
[CrossRef]

1999 (1)

1998 (2)

U. Meier, M. Bosch, Ch. Bosshard, F. Pan, and P. Gunter, J. Appl. Phys. 83, 3486 (1998).
[CrossRef]

P. E. Powers, K. A. Aniolek, T. J. Kulp, B. A. Richmann, and S. E. Bisson, Opt. Lett. 23, 1886 (1998).
[CrossRef]

Aniolek, K. A.

Anstett, G.

M. Rahm, U. Bader, G. Anstett, J.-P. Meyn, R. Wallenstein, and A. Borsutzky, Appl. Phys. B Lasers Opt. 75, 47 (2002).
[CrossRef]

Bader, U.

M. Rahm, U. Bader, G. Anstett, J.-P. Meyn, R. Wallenstein, and A. Borsutzky, Appl. Phys. B Lasers Opt. 75, 47 (2002).
[CrossRef]

Bisson, S. E.

Borsutzky, A.

M. Rahm, U. Bader, G. Anstett, J.-P. Meyn, R. Wallenstein, and A. Borsutzky, Appl. Phys. B Lasers Opt. 75, 47 (2002).
[CrossRef]

Bosch, M.

U. Meier, M. Bosch, Ch. Bosshard, F. Pan, and P. Gunter, J. Appl. Phys. 83, 3486 (1998).
[CrossRef]

Bosshard, Ch.

U. Meier, M. Bosch, Ch. Bosshard, F. Pan, and P. Gunter, J. Appl. Phys. 83, 3486 (1998).
[CrossRef]

Ding, Y. J.

Fernelius, N.

Guan, Y. Y.

Y. Y. Guan, J. W. Haus, and P. E. Powers, J. Opt. Soc. Am. B 10, 443 (2004).

Gunter, P.

U. Meier, M. Bosch, Ch. Bosshard, F. Pan, and P. Gunter, J. Appl. Phys. 83, 3486 (1998).
[CrossRef]

Haus, J. W.

Y. Y. Guan, J. W. Haus, and P. E. Powers, J. Opt. Soc. Am. B 10, 443 (2004).

Ito, H.

Kawase, K.

Kulp, T. J.

Meier, U.

U. Meier, M. Bosch, Ch. Bosshard, F. Pan, and P. Gunter, J. Appl. Phys. 83, 3486 (1998).
[CrossRef]

Meyn, J.-P.

M. Rahm, U. Bader, G. Anstett, J.-P. Meyn, R. Wallenstein, and A. Borsutzky, Appl. Phys. B Lasers Opt. 75, 47 (2002).
[CrossRef]

Mizuno, M.

Nakanishi, H.

T. Taniuchi, S. Okada, and H. Nakanishi, J. Appl. Phys. 95, 5984 (2004).
[CrossRef]

Okada, S.

T. Taniuchi, S. Okada, and H. Nakanishi, J. Appl. Phys. 95, 5984 (2004).
[CrossRef]

Pan, F.

U. Meier, M. Bosch, Ch. Bosshard, F. Pan, and P. Gunter, J. Appl. Phys. 83, 3486 (1998).
[CrossRef]

Powers, P. E.

Y. Y. Guan, J. W. Haus, and P. E. Powers, J. Opt. Soc. Am. B 10, 443 (2004).

P. E. Powers, K. A. Aniolek, T. J. Kulp, B. A. Richmann, and S. E. Bisson, Opt. Lett. 23, 1886 (1998).
[CrossRef]

Rahm, M.

M. Rahm, U. Bader, G. Anstett, J.-P. Meyn, R. Wallenstein, and A. Borsutzky, Appl. Phys. B Lasers Opt. 75, 47 (2002).
[CrossRef]

Richmann, B. A.

Shi, W.

Shikata, J.

T. Taniuchi, J. Shikata, and H. Ito, Electron. Lett. 36, 1414 (2000).
[CrossRef]

Sohma, S.

Takahashi, H.

Taniuchi, T.

T. Taniuchi, S. Okada, and H. Nakanishi, J. Appl. Phys. 95, 5984 (2004).
[CrossRef]

T. Taniuchi, J. Shikata, and H. Ito, Electron. Lett. 36, 1414 (2000).
[CrossRef]

K. Kawase, M. Mizuno, S. Sohma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro, and H. Ito, Opt. Lett. 24, 1065 (1999).
[CrossRef]

Tashiro, H.

Urata, Y.

Vodopyanov, K.

Wada, S.

Wallenstein, R.

M. Rahm, U. Bader, G. Anstett, J.-P. Meyn, R. Wallenstein, and A. Borsutzky, Appl. Phys. B Lasers Opt. 75, 47 (2002).
[CrossRef]

Appl. Phys. B Lasers Opt. (1)

M. Rahm, U. Bader, G. Anstett, J.-P. Meyn, R. Wallenstein, and A. Borsutzky, Appl. Phys. B Lasers Opt. 75, 47 (2002).
[CrossRef]

Electron. Lett. (1)

T. Taniuchi, J. Shikata, and H. Ito, Electron. Lett. 36, 1414 (2000).
[CrossRef]

J. Appl. Phys. (2)

T. Taniuchi, S. Okada, and H. Nakanishi, J. Appl. Phys. 95, 5984 (2004).
[CrossRef]

U. Meier, M. Bosch, Ch. Bosshard, F. Pan, and P. Gunter, J. Appl. Phys. 83, 3486 (1998).
[CrossRef]

J. Opt. Soc. Am. B (1)

Y. Y. Guan, J. W. Haus, and P. E. Powers, J. Opt. Soc. Am. B 10, 443 (2004).

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the DFG THz setup. Two PPLN OPGs serve as the DFG inputs to a DAST crystal. The THz output is collimated and transmitted through a beam tube. The beam tube has Teflon windows and can be evacuated to 1 mTorr . SLM, single longitudinal mode; R, reflectivity.

Fig. 2
Fig. 2

Measured and calculated transmission through a 40 - cm path length of air at 175 Torr containing 3 - Torr partial pressure of water vapor.

Fig. 3
Fig. 3

Transmission spectrum without background correction from 1.6 to 4.5 THz , made by overlapping 12 smaller continuous scans. The dips in the spectrum are water-vapor absorption features. Superimposed on the plot is the phase-matching efficiency, including estimated loss.

Fig. 4
Fig. 4

Transmission measurements through a 40 - cm path length for different pressures. The partial pressure of water vapor was 13 Torr before pumping down.

Metrics